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Foreword 
 

Over the last years, reducing emissions from deforestation and forest degradation in 
developing countries,  the role of conservation, sustainable management of forests and 
enhancement of forest carbon stocks (what is known as “REDD+”) has arisen as a key issue 
in the international climate change negotiations and entered into the public media. There 
are good reasons for this. On the one hand, forest ecosystems, still covering one-third of the 
earth’s land surface, store more carbon than both the atmosphere and the world’s oil 
reserves combined. Forests are the most diverse terrestrial ecosystems, preserve 
watersheds and soils, regulate local climates and provide wood, energy, food, medicines, 
fibres and clean water to society, especially to forest-dependent peoples, a large number of 
whom are poor. On the other hand, ongoing deforestation and forest degradation, which 
the FAO estimates to amount to 5.2 
million hectares net per year (more 
than the size of Costa Rica), accounts 
for up to one-fifth of global 
anthropogenic carbon emissions. 
 
In December 2005, at the climate negotiations in Montreal, the Coalition for Rainforest 
Nations introduced the idea of compensating developing countries for reducing national 
rates of deforestation. Since then governments, international and civil society 
organizations, indigenous peoples, scientific institutions and private firms have been 
debating how to integrate REDD+ into a future international climate agreement. The 
December 2010 Cancun decision on REDD+, under the Ad Hoc Working Group on Long-
term Cooperative Action, represents an important milestone in this respect as it recognizes 
the climate change mitigating role of forests in developing countries and the corresponding 
need for international financial support.  
 
The cost of REDD+ is crucial knowledge 
for forest countries, donors and buyers 
of emission reductions in the future. 
While the transaction and 
implementation costs of REDD+ can be 
more readily estimated from similar 
forest-related activities or when they actually occur, an important cost component may 
remain hidden: by conserving their present forests, countries and landowners forgo the 
benefits of potentially more lucrative alternative land uses, such as crops or livestock — 
this foregone revenue is known as the opportunity cost of REDD+. 
 
This manual is a collective effort of (1) the Facility Management Team of the Forest Carbon 
Partnership Facility (FCPF), (2) the World Bank Institute Carbon Finance Assist program 

Forests contain more carbon 
than the atmosphere and the 
world’s oil reserves combined 

  

REDD+ opportunity costs are the 
difference in net earnings from 
conserving or enhancing forests 
versus converting them to other, 
typically more valuable, land uses 
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(CF-Assist) — the multi-donor trust-funded capacity building program of the World Bank 
Institute Climate Change Practice (WBI-CC) and (3) the Partnership for the Tropical Forest 
Margins (ASB) of the Consultative Group on International Agricultural Research (CGIAR). 
 
The manual shares hands-on experiences from field programs and presents the essential 
practical and theoretical steps, methods and tools to estimate the opportunity costs of 
REDD+ at the national level. The manual addresses the calculation of costs and benefits of 
the various land use alternatives in relation to their carbon stocks. As required data are 
generally not readily available, the manual also includes information on data collection, 
analysis and evaluation techniques. Although sections of the manual are relevant for sub-
national or project analysis, it is not intended to calculate compensation for farmers or 
landowners at a given site. 
 
The target audience of the manual includes professionals within governments, universities, 
research institutions, international or non-governmental organizations and program 
developers who may use the presented methods and tools to estimate opportunity costs 
and incorporate these costs into recommendations for REDD+ policies and programs. As 
part of a capacity building objective, a series of 
training-of-trainer workshops is scheduled for 
countries participating in the FCPF and UN-
REDD Programme in Africa, Asia and Latin 
America.  
 
The manual was edited by Pablo Benitez, Marian de los Angeles and Gerald Kapp (World 
Bank Institute), Benoît Bosquet, Stephanie Tam, Alexander Lotsch (FCPF Facility 
Management Team), Stefano Pagiola (World Bank Latin America and Caribbean Region) 
and Carole Megevand (World Bank Africa Region). We are grateful for the dedicated work 
of the main authors Douglas White and Peter Minang (ASB) and their co-authors Brent 
Swallow, Fahmuddin Agus, Glenn Hyman, Jan Börner, Jim Gockowski, Kurniatun Hairiah, 
Meine van Noordwijk, Sandra Velarde and Valentina Robiglio. We also appreciate the 
contributions of Michael Richards and Simone Bauch. In addition, external reviews from 
Erick Fernandes, Gregory Frey, Ken Andrasko, Loic Braune, Martin Herold, and Timm 
Tennigkeit are appreciated. 
 
Washington, DC, February 25, 2011 
 

 
          Joëlle Chassard               Neeraj Prasad 
Manager, Carbon Finance Unit    Manager, Climate Change Practice 
         The World Bank        World Bank Institute  

The cost of REDD+ is 
crucial knowledge for 

governments, donors and 
buyers of carbon credits 
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What are REDD and REDD+?  
1. Both REDD and REDD+ are intended to help reduce carbon emissions into the earth’s 
atmosphere. REDD (Reducing Emission from Deforestation and Degradation) is a general 
term for an international policy and finance mechanism that will make possible the funding 
of forest conservation and establishment, and/or large-scale purchases and sales of forest 
carbon. REDD is intended to address both deforestation (the conversion of forested to non-
forested land) and forest degradation (reductions in forest quality, particularly with 
respect to its capacity to store carbon).1 

2. REDD+, an expanded version of REDD, was defined in the Bali Action Plan as: policy 
approaches and positive incentives on issues relating to reducing emissions from 
deforestation and forest degradation; and the role of conservation, sustainable management 
of forest and enhancement of forest carbon stocks in developing countries.2 For the purposes 
of this training manual, REDD+ is emphasized. 

3. By making conservation and sustainable management of forests (along with their 
carbon) more economically feasible, REDD+ policy can influence land use decisions within 
countries. UNFCCC ratification of REDD+ would likely allow forested countries to sell 
carbon credits to interested buyers in markets or receive financial support from 
conservation funds. The particulars of REDD+ mechanisms are, however, still being 
clarified.  

4. Financial flows from REDD+ programs could reach up to US$30 billion a year, in order 
to halve emissions between 2005 and 2030.3 Besides reducing carbon emissions, the flow 
of funds, primarily North-South, could support new, pro-poor development, and help 
conserve biodiversity and other vital ecosystem services (UN-REDD, 2010).  

National REDD+ strategies and benefit-sharing mechanisms 
5. With ratification, REDD+ will affect, and potentially benefit, a wide range of land 
users.4 Stakeholders include farmers, ranchers, loggers, rubber tappers, private businesses, 
etc. – anyone who has land-based activities in rural regions. Since REDD+ funds will pass 
through national governments, countries will need to decide how to prioritize programs 
and share the benefits. To facilitate the process of developing a national REDD+ strategy, 
this manual helps policymakers identify the costs of participating in REDD+ programs at a 

                                                        
1  Specifics for a single widely-accepted definition of forest degradation have not yet been generated, for more 
see Chapter 5 and http://www.fao.org/docrep/009/j9345e/j9345e08.htm. 
2 Paragraph 1 (b) (iii) of the Bali Action Plan (BAP). 
3 Kindermann, et al. (2008) estimate that halving emissions from deforestation between 2005 and 2030, 
which corresponds to 1.7 to 2.5 billion tons of carbon dioxide (CO2) emissions, would require financial flows 
of US$17 to 28 billion per year. This would require a payment of US$10-21/tCO2. A 10% emissions reduction 
over the same period would cost between US$0.4 and 1.7 billion annually and US$2-5/tCO2. 
4 This section has  benefitted from the contributions of G. Frey (2010, personal communication). 

http://www.fao.org/docrep/009/j9345e/j9345e08.htm
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national level, by focusing on the analysis of opportunity costs. Given the importance of 
benefit sharing, we briefly discuss some of the ways the benefits of REDD+ can be shared 
within a country. 

6. In some cases, countries may choose to make direct financial payments to individuals, 
businesses and communities to compensate them for their activities that protect and 
conserve forests. In other cases, countries may fund programs to finance capacity-building 
and investments for alternative livelihood strategies and/or other community 
development activities. Such an approach is a form of indirect compensation. The selection 
of national policies for benefit sharing is an important component of a REDD+ readiness 
process.5 

7. Identifying effective and equitable benefit-sharing mechanisms can be a challenging 
task. For instance, land ownership and associated rights may be contested or not 
formalized (titled) making fair and adequate compensation difficult. Similarly, if a REDD+ 
intervention is to reduce illegal logging, a policy to compensate to illegal operators could 
create perverse incentives to cut trees in order to receive payments. Here, indirect 
compensation and other mechanisms would likely work best to achieve a REDD+ goal. 
(More on the risks and limitations of REDD+ and opportunity costs are discussed below in this 
chapter.) 

8. If a REDD+ strategy limits livelihood activities (being legal or not), then opportunity 
costs arise. If these costs are not compensated in some way (financially or otherwise) there 
are two implications: (1) pressure on forests will continue, or (2) the opportunity cost 
would cause harm to communities, which is a violation of international good practice 
standards (and World Bank Safeguards) of “doing no harm.” (See Chapter 3 for a discussion 
on safeguards.) 

9. This manual does not advocate any particular REDD+ strategy or benefit-sharing 
mechanism. Rather, it is the opinion of the authors that estimating opportunity costs can 
provide important information to the process of developing and implementing effective 
and equitable REDD+ strategies.  

                                                        
5 From FCPF (2010): Use clear and transparent benefit-sharing mechanisms with broad community support, so 
that  REDD+ incentives are used in an effective and equitable manner with the objective to further tackle 
deforestation and forest degradation. In some cases, the national government can be the best actor to enact and 
implement the necessary policy changes and regulations. But many changes will also require the involvement of 
indigenous peoples, local communities and the private sector, in which case these stakeholders or rights-holders 
would expect to partake in the REDD+ activities and the corresponding carbon revenues (or alternative 
financing or support) in recognition of their contributions. In other cases, indigenous peoples, local communities 
and the private sector would be the primary actors implementing the ER [Emission Reduction] Programs and 
thus expect to be the principal beneficiaries of ERPA [Emission Reductions Payment Agreement] payments. These 
arrangements will have to reflect the assessment of the drivers of deforestation and forest degradation. 
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Costs of REDD+ 
10. In order to receive REDD+ funding, countries must reduce deforestation and forest 
degradation, and/or enhance carbon stocks. To do so, however, generates costs. These 
costs can be grouped into three general categories:  

(1) opportunity costs resulting from the forgone benefits that deforestation would 
have generated for livelihoods and the national economy,  

(2) implementation costs of efforts needed to reduce deforestation and forest 
degradation, and  

(3) transaction costs of establishing and operating a REDD+ program.6  

11. Although some of the individual components of implementation and transaction costs 
can be interchanged, implementation costs are typically associated with reducing 
deforestation directly, whereas transaction costs are indirectly associated. Brief 
descriptions of these costs are provided below and are summarized in Figure 1.1. 

Opportunity costs 
12. Deforestation, despite all its negative impacts, can also bring economic benefits. 
Timber can be used for construction, and cleared land can be used for crops or as pasture. 
Reducing deforestation and preventing land use change means forgoing these benefits. 
Similarly, forest degradation also generates benefits from selective logging, fuelwood 
collection, or grazing of animals, for example. Avoiding forest degradation implies forgoing 
these benefits. The costs of the forgone benefits (net of any benefits that conserved a forest 
generates) are known as “opportunity costs” and can be the single most important category 
of costs a country would incur while reducing its rate of forest loss within REDD+. 

13. Opportunity costs include, most obviously, the forgone economic benefits of the 
alternative land use, what we term direct, on-site opportunity costs. They can also include 
social-cultural and indirect costs: 

Social-cultural costs. Preventing the conversion of forests to other land uses, can 
significantly affect the livelihoods of many rural dwellers. Such an alteration in 
the way of life may bring about social and cultural costs that are not easily 
measured in economic terms.7 Examples of such costs could include 
psychological, spiritual or emotional impacts of livelihood change, loss of local 
knowledge, and erosion of social capital. These costs can be minimized if 
alternative livelihoods are viable and readily accessible with the implementation 
of a REDD+ program.   

                                                        
6 These categories are not definitive, but provide an overview of the different REDD+ costs. For a discussion 
of REDD+ costs, see Pagiola and Bosquet (2009). Costs can be arranged in fewer or more categories. 
7 See Chapter 3 for discussion of involuntary resettlement policy of the World Bank. For a comprehensive 
review of social impact assessment, see Richards and Panfil (2010). 
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Indirect, off-site costs. Changes in economic activities, from timber and agriculture 
to other productive sectors, can also affect downstream actors of associated 
product supply chains. In addition, less economic activity could have an effect on 
national tax revenues. Similar to opportunity costs, these indirect costs are not 
total, but need to be estimated on a difference basis (that is, with vs. without 
REDD+).8 Such indirect costs associated to REDD+ can be estimated by using 
multipliers or multi-market economic models. 

Other indirect costs include global feedback relationships arising from REDD+ 
policy. Land uses within a country under a REDD+ policy scenario would be 
different than a non-REDD+ scenario. Since more land would be in forest with 
REDD+, the prices of timber, agricultural and ranching products would likely 
increase. The combined effect of less conversion of forest to agriculture and more 
restoration of forests from agriculture would reduce land under cultivation, 
potentially increasing the costs of food, fiber and fuel. Such price changes could 
represent significant opportunity costs.9  

 

14. This manual focuses on estimating direct, on-site opportunity costs. Along with other 
socio-economic information, the field-level economic data collected for this component of 
opportunity cost can be used to estimate indirect opportunity costs. The information and 
enhanced knowledge of farm, cattle and timber production and their performance within 
supply chains will help analysts understand potential REDD+ program impacts on the 
respective economic sectors. For the sake of brevity, the term opportunity cost will refer to 
direct, on-site opportunity costs throughout this manual. 

                                                        
8 In addition, the growth of other productive sectors needs to be estimated, as economic conditions are not 
static. 
9Furthermore, global population increases and consumption patterns associated with higher living standards 
will also likely raise pressures to convert forests into pastures or agricultural fields, thereby increasing 
REDD+ opportunity costs. Nevertheless, these factors are independent of REDD+ programs and should 
therefore not be considered an indirect cost attributable to REDD+. Similarly, other factors such as technology 
change, which can improve the productivity of lands (e.g. higher yielding crops), could also be mistakenly 
included as an indirect benefit of REDD+. 
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Figure 1.1. The costs of REDD+  
Source: Authors. 
 

Implementation costs 
15. In addition to opportunity costs, there are also costs involved in implementing a 
REDD+ program. These are the costs directly associated with actions to reduce 
deforestation, and hence emissions. Examples include the costs of:  

• guarding a forest to prevent illegal logging,  
• replanting trees in degraded or logged forests, 
• relocating timber harvesting activities away from natural forests to degraded 

forests scheduled for reforestation,  
• intensifying agriculture or cattle ranching so less forest land is needed for 

food, fiber and fuel production,  
• re-routing a road project so that less forest land is destroyed as a result of 

opening the road,  
• relocating a hydroelectric production project away from a natural forest,  
• delineating and/or titling land of indigenous and settler communities so that 

they have an incentive to continue protecting forests against conversion, 

•Direct, on-site
•profit difference between conserving forests and converting them to 
other, typically more valuable, land uses
•the difference in profits from increasing carbon within forests or of 
restored forests

•Socio-cultural
•livelihoods restricted or changed
•psychological, spiritual or emotional impacts
•Indirect, off-site
•difference in value-added activities (changes in economic sectors 
attributable to REDD+)
•tax revenue differences
•agriculture and forest product price increases from economy feedbacks 
(dynamic not static effects)

Opportunity

•land use planning
•land tenure / governance reform
•forest protection, improved forest and agriculture management
•job training
•administration

Implementation

•REDD+ program development
•agreement negotiation
•emission reduction certification  (measuring, reporting, verification: MRV)
•stabilization, prevent deforestation moving to other countries (stop leakage)

Transaction
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• providing capacity building, infrastructure or equipment to develop 
alternative livelihoods to communities.   

16. All of these and similar measures incur up-front investment and perhaps recurring 
costs for public and/or the private sectors, which need to be adequately assessed and 
financed.  

17. Implementation costs also comprise the institution- and capacity-building activities 
that are necessary to make the REDD+ programs happen. Examples of costs include the 
expenses associated with the goods, training, research, and the political, legal and 
regulatory processes, including consultations and government decision-making processes. 

Transaction costs 
18. Over and above opportunity costs and implementation costs, REDD+ also comes with 
transaction costs. Transactions costs are incurred throughout the process: REDD+ program 
identification, transaction negotiation, monitoring, reporting, and verifying the emission 
reductions. Transactions costs are incurred by the implementers of a REDD+ program and 
third parties such as verifiers, certifiers, and lawyers. To illustrate, transactions costs arise 
from (1) different parties involved in a REDD+ transaction, such as the buyer and seller or 
donor and recipient, and (2) external parties such as a market regulator or payment system 
administrator that oversee compliance of stated emission reductions. Such activities and 
associated costs are nevertheless necessary to the transparency and credibility of the 
REDD+ program.  

19. Transactions costs are typically considered separate from implementation costs, since 
by themselves they do not reduce deforestation or forest degradation. Transactions costs 
may also include so-called ‘stabilization costs’ arising from the need to prevent 
deforestation activities from moving to other countries that are not participating in REDD+. 
Nevertheless, it is not yet clear whether REDD+ participants will have to allow for such 
costs.10 

Examples of REDD+ cost estimates 
20. Opportunity costs can be high (e.g. when forests are converted to establish lucrative 
oil palm plantations), low and even negative (e.g. when forest conversion is for low 
productivity pastures). A global review of 29 empirical studies by Boucher (2008a) found 

                                                        
10  Stabilization costs for the eleven most important high forest-low deforestation (HFLD) countries would 
cost an estimated US$1.8 billion annually. To cover 7 to 10 countries would cost only US$365 million to 
US$630 million (da Fonseca et al., 2007). These estimates refer to maintaining emissions constant. 
Stabilization costs of REDD+ are likely to be higher. Participating REDD+ countries will likely not pay these 
costs on an individual basis, rather a common fund would be established. Contribution mechanisms to the 
fund have yet to be determined but could be based on the size of the national REDD+ program, a flat-rate 
membership or a mix of these options. 
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an average opportunity cost of US$2.51/tCO2. Eighteen out of the 29 estimates of land use 
change were less than US$2/tCO2, and 28 out of 29 were less than US$10/tCO2. 

21. For other REDD+ costs, US$1/tCO2 was estimated to represent transaction, 
implementation and administrative costs (Boucher 2008b).11 These costs somewhat 
overlap, possibly making this a conservative overestimation. Since these estimates were 
largely based on a project basis, cost efficiencies may be possible to achieve with larger 
REDD+ programs. Nevertheless, the estimate could be substantially higher in specific 
national contexts, thus impacting viability of some REDD+ program options.  

Why opportunity cost estimates are important  
22. Estimating the opportunity cost of REDD+ is important for five basic reasons: 

One, opportunity costs are thought to be the largest portion of REDD+ costs 
(Boucher, 2008a; Pagiola and Bosquet, 2009; Olsen and Bishop, 2009). Boucher’s 
review of 29 regional empirical estimates found average opportunity costs to be 
between 80 and 95% of the costs of avoiding deforestation in the countries with 
the most forest cover. This estimate, however, will not necessarily be true for all 
countries. The relative magnitude of all REDD+ costs depends on national context 
and specific location. In some circumstances, the opportunity costs of some land 
uses, especially in remote areas, may be less than transaction and implementation 
costs.  

Two, estimating opportunity costs provides insights into the drivers and 
causes of deforestation. Forests are not cut out of malice—they are cut because of 
the economic benefits generated. High opportunity costs tend to be linked with 
high deforestation pressures. Typically, such lands have been or are being 
converted to uses of higher economic value such as timber and agriculture (Pagiola 
and Bosquet, 2009). Here too, there is considerable variation; in some cases, forests 
are converted to very low-value uses (Chomitz, et al., 2006). By helping to better 
understand drivers of deforestation, opportunity cost estimates can thus help 
policymakers identify and develop appropriate responses.  

Three, opportunity costs can help to identify the likely impacts of REDD+ 
programs across social groups within a country. Land uses are often associated 
with specific social groups. Knowing who would likely gain or would lose from a 
REDD+ program can help identify potential moral/ethical consequences – if losses 
were borne by marginalized groups. Possible hidden challenges of national REDD+ 
program strategies may also be apparent, such as losses being incurred by 

                                                        
11 Transaction: $0.38/tCO2 (Antinori and Sathaye, 2007), implementation: $0.58/tCO2 (Nepstad, et al. 2007) 
and administration: $0.04/tCO2 (Grieg-Gran, 2006). In per hectare terms: a lower bound for annual 
administration costs is US$4 per ha and upper bound of US$15 per ha.  
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politically powerful groups able to prevent adoption of REDD+ policies or resist 
their implementation. With the insights gained from REDD+ opportunity cost 
estimates, national REDD+ strategies can develop effective policies and 
mechanisms to reduce deforestation and avoid adverse social consequences 
(Pagiola and Bosquet, 2009). 

Four, opportunity costs help to identify fair compensation for those who 
change their land use practices as part of REDD+.  Since livelihoods are affected 
by land use activities, REDD+ opportunity costs are an estimate of the amount of 
income that alternative livelihoods would need to provide. For instance, in cases 
where natural protected areas are strengthened, opportunity costs are an estimate 
the loss of income to nearby communities arising from use restrictions. Even if 
these communities are not directly compensated, the cost information is important 
for policymakers to understand the impacts of a REDD+ conservation policy in 
order to develop other types of compensation.  

Five, the information gathered to estimate opportunity costs is a basis for 
improving estimates of other REDD+ costs. Opportunity and other REDD+ costs 
are likely to significantly differ within a country – even for similar land use changes. 
The process of gathering sub-national information, increases knowledge of local 
biophysical and socioeconomic contexts, which can also improve understandings 
needed to refine estimates based on generic values. For example, models of indirect 
opportunity costs, which typically employ average opportunity cost estimates, can 
become more accurate by taking into account sub-national information. Similarly, 
implementation and transactions costs can also be estimated on a spatially 
differentiated basis.  

Risks and limitations of REDD+ opportunity cost estimates 
Risks 
23. Opportunity cost analysis can help inform the development of national REDD+ 
policies. Nevertheless, some serious risks can arise. Below are two risks associated with 
opportunity cost estimates, along with remedies to reduce possible harm. 

One, inaccurate application of opportunity cost estimates. Seemingly similar 
land use changes may have very different opportunity costs. Many factors 
determine opportunity costs, both biophysical and socio-economic. Therefore, 
opportunity costs should never be applied uncritically. For example, opportunity 
costs may differ due to distinct soil fertility or market access contexts. Remedy: 
Estimate and identify valid sub-national areas to which site-specific results can be 
extrapolated. This process is a crucial discussion topic within this training manual. In 
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addition, to foster a process of timely improvement (i.e. precision and accuracy)12 of 
opportunity cost estimates, three levels of data and analysis requirements (analogous 
to the UNFCCC Tiers 1,2,3) are 
suggested. (More on this in 
Chapter 2.) 

Two, opportunity cost is 
considered to be the only 
component of REDD+ costs. 
Opportunity costs are only one piece of the REDD+ cost puzzle. If transaction and 
implementation costs are also taken into account, different conclusions regarding 
viable national REDD+ strategies could be reached. Remedy: Analysis and policies 
should not only focus on opportunity costs, but also address other REDD+ costs 
(implementation and transaction) that are important in developing nationally-
appropriate REDD+ strategies. 

Limitations 
24. Opportunity cost analysis in general, and the approach specifically presented here, 
both have limitations that should be considered while estimating REDD+ costs: 

One, opportunity cost analysis does not account for the cost of lost 
employment that could arise from wide-scale change in land use. To obtain 
alternative employment, time and training is often required. Moreover, in many 
rural contexts where REDD+ is likely to be implemented, high levels of under- and 
un-employment prevail. Therefore, jobs forgone, from agricultural to forest land 
uses for example, could lead to substantial costs. In addition, many classes of 
people may not be eligible for compensation, yet their livelihoods would be 
affected, including people without land title, rural laborers, illegal loggers and 
potentially other groups of affected people. Remedy: Estimate employment impacts 
per type of land use change associated with a REDD+ program. Examine tradeoffs and 
scenarios (Chapter 9). Magnitude of costs will depend on the size of the REDD+ 
programs and their effect on the landscape. Results from analysis will enable 
policymakers to identify priority areas and efforts to generate jobs (a type of 
implementation cost). The success of REDD+ programs (i.e., sustainably diverting 
forest adverse activities) depends on creating lucrative alternative activities in 
intensified agriculture, forestry or other sectors of the national economy. 

Two, direct, on-site opportunity costs underestimate total opportunity costs. 
REDD+ could substantially alter forestry and agriculture economic sectors, input 
and output prices, and patterns of land use. Thus, other components of opportunity 

                                                        
12 Accuracy is how close the estimates are to the “true” value, whereas precision is how close the estimates are 
to each other. 

Risks of opportunity cost estimates: 
- inaccurate application 
- considering opportunity costs to 

be equal to all REDD+ costs  
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costs, socio-cultural and indirect off-site costs, also need to be considered within 
REDD+ policy analyses. Remedy: Direct on-site opportunity costs can approximate 
the effect of such cost components within sensitivity and scenario analyses (Chapter 
9). For example, a multiplier or additional socio-cultural costs can be estimated for 
specific land use changes. Similarly, additional costs arising from economic changes 
(e.g. prices) can be included with multipliers. These initial analyses can be used as a 
basis for discussion and justification for subsequent multi sector economic modeling.  

 

25. Despite these risks and limitations, the authors consider the analytical approach as a 
useful and essential step to understanding opportunity costs. The manual strives to 
illustrate a process of data collection and analysis to transparently estimate REDD+ 
opportunity costs and avoid calculation and interpretation pitfalls.   

Important issues not addressed by opportunity cost analysis 
One, off-site environmental impacts (externalities) of land uses. Although 
opportunity cost analysis of land uses is based multi-year time horizons, associated 
environmental impacts (e.g. negative downstream effects, biodiversity loss) are not 
explicitly taken into account. Remedy: Such negative impacts can be discussed when 
reviewing opportunity costs at sub-national and national levels. Adequate costing of 
negative effects can be accomplished within a country accounting stance (defined in 
Chapter 3). On-site impacts, such as land degradation, can be examined with 
sensitivity and scenario analysis of 
the opportunity cost estimates 
(Chapters 7 and 9). For example, 
yield estimates from agricultural 
activities can decrease over the time 
horizon of the analysis. 

Two, land and resource governance. Since legal and customary rights may not 
coincide, especially where land and resource rights are not well defined or 
enforced, determining the opportunity costs and who bears them may not be 
possible. An opportunity cost analysis that only takes into account legal rights 
without recognizing customary rights and uses will fail to estimate the true cost 
impact of REDD+ on individuals and communities. Moreover, if REDD+ strategy or 
intervention is based on a misrepresented estimate, particular vulnerable groups 
could be disenfranchised. Remedy: As part of a national REDD+ strategy 
development process, discussion of governance is essential. Participation in 
discussions (and analysis) should go beyond government and include affected 
stakeholders in civil society. 

Other important REDD+ issues: 
- environmental impacts 
- governance 
- illegal forest activities 
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Three, appropriate strategies and interventions to reduce illegal forest 
activities. When laws are enforced as part of a national REDD+ strategy, actors in 
illegal practices will bear an opportunity cost. How and if the opportunity costs are 
recognized, may be different according to type of actor. In cases such as illegal 
logging by foreigners, a country may decide it is not appropriate to compensate 
opportunity costs. In this case, the more substantial cost of REDD+ would not be 
the opportunity cost, but the implementation cost of adequately enforcing the law. 
In other cases, such as customary but illegal activities undertaken by low-income 
groups, a country may decide to compensate for opportunity costs (either directly 
or indirectly). Remedy: Like the above limitation, a national REDD+ strategy 
development process should include discussion of legal and illegal forest activities. 
Participation in discussions should also include affected stakeholders in civil society. 
In this case, compensation should be given in form of creating legal jobs as an 
alternative to illicit forest depleting activities. 

REDD+ safeguards 
26. Advances in social and environmental safeguards include defining and building 
support for a higher level of social and environmental performance from REDD+ programs. 
As REDD+ policy moves forward, the participation of local and indigenous communities in 
the identification and analysis of potential positive and negative impacts of REDD+ can 
inform safeguard policies that ensure forest users can maintain their traditional rights and 
uses of land resources.  

27. Besides the World Bank safeguards presented in Chapter 3, an international review is 
in process to ensure consistency across the country-specific interpretations (CCBA and 
CARE International, 2010). Proposed standards include principles, criteria and indicators 
that define the issues of concern and performance levels. The following principle addresses 
cost analysis: 

Principle 2: The benefits of the REDD+ program are shared equitably among all 
relevant rights holders and stakeholders. 
Criteria Framework for indicators 
2.1 The projected costs, potential benefits and 
associated risks* of the REDD+ program are 
identified for relevant rights holder and 
stakeholder groups at all levels using a 
participatory process. 

2.1.1 Projected costs, potential revenues and 
other benefits and associated risks of the 
REDD+ program are analyzed for each 
relevant rights holder and stakeholder groups 
at all levels using a participatory process. 

*All analysis of costs, benefits and risks should include those that are direct and indirect and include social, 
cultural, human rights, environmental and economic aspects. Costs should include those related to 
responsibilities and also opportunity costs. All costs, benefits and risks should be compared against the 
reference scenario which is the most likely land-use scenario in the absence of the REDD+ program. 
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28. International efforts have been made to classify and prioritize REDD+ activities and 
assess critical constraints to sub-national project development.  For example, well-defined 
land-use rights along with equitable and effective governance plays a key role in 
implementing REDD+ (e.g., illegal logging/conversion on public or private lands). 
Principles of good governance include transparency, participation, accountability, 
coordination and capacity (World Resources Institute, 2010).  To address these and other 
challenges, reviews and reforms of legal, political, and institutional framework for carbon 
finance are typically required (see Richards, et al., 2010, The Forests Dialogue, 2010).  

An important question  
29. With REDD+ programs, lost are the potentially larger profits from future agriculture 
and logging activities.13 So we need to ask: 

Can REDD+ programs provide enough incentive to conserve or restore forests?  

30. The quick reply: it depends on the international carbon price, the type of land use 
change and the different types of REDD+ costs that a country will face in order to reduce 
emissions.  Thus the answer to the question will be ‘yes’ for some forms of deforestation, 
and ‘no’ for others, and unclear in yet others. Because agro-ecological, economic, and social 
conditions can greatly differ from place to place within a country, the costs of REDD+ can 
likewise differ substantially. Furthermore, the cost and effectiveness of measures to reduce 
deforestation will vary per location.  

31. It is quite likely that every country will find many locations in which REDD+ would not 
be justified by any realistic payment per ton of carbon emission reduction. Conversely, it is 
also very likely that every country will find that it has many areas in which even modest 
payments for avoided emissions would render efforts to reforest or avoid deforestation 
attractive. The real issue is not whether REDD+ payments would be attractive at all, but 
how many emission reductions a country would find it attractive to provide at any given 
price per ton of carbon reduced. Understanding the opportunity costs of land use changes 
is a critical step (but not the only step) in answering this question. 

32. Let’s first examine three typical land use changes, from forest to: 

High-value agriculture  
Examples: soybean, oil palm or cattle on productive lands 
33. Compensation from a REDD+ program is likely to be less 
than the profits from high-value activities on productive lands. 
In other words, the opportunity cost of the high-value 
agriculture is greater than the potential income from a REDD+ 
program. Carbon prices would need to be very high in order 
                                                        
13 The term agriculture also includes ranching and tree-based or perennial cropping activities. 

probably 
no
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for REDD+ to be attractive, unless there were also significant co-benefits to conserving 
forests, such as protecting the water supplies of downstream users.  

Mid-value agriculture 
Examples: soybeans, oil palm or cattle on normal quality lands 
34. Income from a REDD+ program may be more than the 
profits of mid-value agriculture. Compensation from REDD+ is 
slightly more than the opportunity costs of such land use 
activities. Yet, transaction and implementation costs of a 
REDD+ program may erase net benefits. 

Low-value agriculture  
Examples: shifting cultivation or cattle on marginal lands 
35.  Most likely, income from a REDD+ program is more than 
the profits from low productivity agricultural activities. In this 
situation, it is worthwhile for a landowner to accept 
compensation associated with REDD+ and maintain land as a 
forest (instead of converting it to agricultural use). 

36. So far, we have only mentioned land use changes that involve deforestation. What 
about increasing carbon stocks on lands already where the forest cover has been partly or 
totally removed? Low-productivity lands exist throughout much of the world, such as some 
degraded forests, pastures, grasslands, shifting cultivation lands, old and exhausted 
perennial croplands, etc. Depending on the specific REDD+ policy negotiated and 
implemented, restored low carbon / low productivity lands may have a significant role to 
play in carbon funds and markets. 

Reforestation or afforestation  
Examples: Native timber tree plantations on low-productivity 
agricultural or pasture lands 
37. The investment costs to re-establish forests may be 
compensated by REDD+ programs. Earnings from the 
reforested areas may be greater than from low productivity 
agricultural, ranching uses, especially if timber is selectively 
harvested in the future. 

 

What about the value of wood and timber?  
38. The above deforestation examples only recognized the value of agricultural 
production after the land use change from forest. As we will show in this manual, the value 
from other sources can greatly affect opportunity cost estimates of land use change. These 
sources can include profits from timber, charcoal and firewood that are produced when 

probably 
yes

maybe

maybe
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clearing the forest or, alternatively, with enhanced forest management. When these profits 
exist, accurate REDD+ opportunity costs estimates should include the contribution of these 
forest products as well.  

An opportunity cost example 
39. Since learning about opportunity costs is best illustrated with numbers, we present an 
example. Let’s compare a hectare of forest to a hectare of agricultural land. Figure 1.2 
summarizes the carbon stock and profits of each land use. The forest has approximately 
250 tons of carbon per ha (tC/ha), whereas agricultural use has about 5 tC/ha.14 
(Procedures on how to estimate the tC/ha stock value per land use is in Chapter 5.) The 
estimated profits from agriculture are $400/ha, while forest profits are $50/ha, expressed 
in Net Present Value (NPV) terms.15 (An explanation of how to estimate NPV profits is in 
Chapter 6.)  

40. While the forest stores more carbon, agriculture produces more profit, revealing a 
land use tradeoff between carbon and profits. Converting a forest into an agricultural land 
use increases profits by $350/ha but reduces carbon stock by 245 tC/ha.  

 

 
Figure 1.2. Carbon loss and profit gain from converting forest to agriculture 
 
41. The opportunity cost of not changing forest to agriculture is equal to the $350/ha of 
profit difference ($400–$50=$350/ha) divided by the 245 tC/ha not emitted (250–
5=245tC/ha). Thus, the opportunity cost, per ton of carbon, is $1.43/tC (=$350/245tC). 

42. REDD+ compensation, however, is not based on carbon (tC), but rather on emissions 
of carbon dioxide equivalents (CO2e). A conversion factor of 3.67 is needed to translate tC 

                                                        
14 These figure are illustrative. Significant variation can arise within landscapes and across countries. 
15 Net present value is the summing of a stream of annual profits, whereby future profits are reduced by a 
factor (i.e., discount rate) that reflects the inherent preference for money now, rather than profits generated 
in the future. 
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to tCO2e. (See Box 1.1 for further explanation.) So, the potential emissions of the land use 
change is 899tCO2e/ha (245tC/ha * 3.67 tCO2e/tC = 899tCO2e/ha).  

43. With an estimate of the difference in profits ($350/ha) and the emissions avoided 
(899 tCO2e/ha), an opportunity cost of avoided emissions can be estimated. The 
opportunity cost is $0.39/tCO2e of not converting a forest into agricultural land.  

44. This per ton carbon equivalent estimate is one way of expressing opportunity costs. 
Yet for landholders, the more relevant way to express opportunity costs is per hectare. In 
this example, the per unit land area estimated opportunity cost is $350/ha.  In other words, 
by not converting a forest to agriculture, the 
farmer forgoes $350/ha in NPV profits. 

45. Although estimating opportunity costs is 
relatively simple in theory, in practice, generating 
reliable estimates can be difficult. Multiple series 
of calculations are required, each with possibilities 
of making errors. In addition, numerous assumptions about measures and methods need to 
be made, often requiring discussion and agreement, in order to generate precise and 
accurate estimates of both carbon and profits of land uses.  
46. It is important to note that opportunity costs are not based on land use, but rather the 
change in land use. Land use change is the difference between an initial state and an end 
state. The time period of analysis can be of any length, but should follow the 
Intergovernmental Panel on Climate Change (IPCC) reporting requirements (i.e., 5 years) 
and/or the time frame of a national strategic plan (perhaps more than 5 years).  

 
 
Box 1.1. What is a carbon dioxide equivalent? 
The major greenhouse gas associated with land use change is carbon dioxide (CO2). Carbon 
is approximately 46% of the biomass (per kilogram of dryweight) stored in trees and 57% 
of soil organic matter.  When one unit of tree carbon is burned or otherwise decomposes, 
the carbon combines with two units of oxygen to produce one unit of CO2. Given the atomic 
weights of carbon (12) and oxygen (16), one unit of C is equal to 3.67 units of CO2 
((12+(2*16))/12)=3.67).  

Deforestation and degradation also produce other greenhouse gases (GHGs) including 
nitrous oxide (N2O) and methane (CH4). N20 has 231 times higher global warming potential 
than CO2. Whereas, CH4 has 23 time the warming potential. To standardize the effect of 
different gas emissions, international convention measures greenhouse gas loading in 
terms of CO2 equivalents, represented by CO2e.  
Source: IPCC, 2006. 
 
 

Two versions of 
opportunity cost: 

- per unit carbon (tCO2e) 
- per unit land area (ha) 
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Carbon – profit tradeoffs  
47. Let us extend the previous example to compare forests against three distinct land 
uses: agriculture, agroforests, and low-productivity pastures (Figure 1.3).  

Figure 1.3. Carbon and profits of four land use categories 

 

48. Comparing the land uses in this example, we can see that: 

• Carbon stocks of agriculture, pasture and agroforestry are all lower than 
natural forest.  

• Profit from agroforestry is highest, with agriculture about half as much. 
Profits from forest and pastures are both low.  

• Low-productivity pastures have low carbon content (5tC/ha) and low profits 
($40/ha). Therefore, unlike conversion to agriculture, conversion to pastures 
would not be a carbon-profit tradeoff.  

• Although agroforestry has lower carbon stocks than forests, the carbon content of 
agroforestry is substantially (80tC/ha) more than agriculture (5tC/ha). Of particular 
interest is the high NPV profit ($800/ha).  

 

Comparing opportunity costs 
49. Figure 1.4  presents the opportunity costs of three types of land use change (forest to 
pasture, agriculture, and agroforestry). Each has a different opportunity cost. Both changes 
to agriculture and agroforestry land uses have higher opportunity costs. Since agriculture 
has lower NPV profits and lower carbon content than agroforestry, the opportunity costs of 
avoiding the emissions from changes to agriculture are less than those of agroforestry.  

Natural 
forest

Agriculture

Pasture

Agroforest

$0

$100

$200

$300

$400

$500

$600

$700

$800

NPV Profits
N

PV
 $

/h
a

Natural 
forest

Agriculture Pasture

Agroforest

0

50

100

150

200

250

C-stock

tC
/h

a



 

 1-18 

50. In the case of forest to low-productivity pastures, the opportunity costs of the land use 
change is not actually a cost. The opportunity cost is negative – which can be considered a 
potential benefit. Landholders could realize an economic gain by not deforesting for 
producing cattle on low-productivity pastures. Profits would increase from $40 to $50/ha 
reflecting the lack of a carbon-profit tradeoff. In terms of the associated CO2e, the 
opportunity cost is negative, that is -$0.01/tCO2e. This is example of so-called low-hanging 
fruit – where REDD+ compensation may not be necessary in financial terms, but may be 
available and needed, to avoid such a land use change or restore a forest.   

 
Figure 1.4. Example opportunity costs of three land use changes 
 

Tradeoffs within a national landscape 
51. People use land in many ways. Table 1.1 presents eleven categories of land use with 
their respective estimates of carbon stock, profits and rural employment. These land uses 
are representative of many tropical countries and can be adjusted to match predominant 
land uses. 

52. Land uses with trees tend to have higher carbon, but with lower profits and 
employment. Throughout this training manual, these eleven land use categories and 
associated estimates will be used to illustrate how to estimate opportunity costs of REDD+ 
policies and their associated effects on countries, economic sectors and citizens.  
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Table 1.1. Example carbon, profits and employment of land uses, Peruvian Amazon 

Land use  
C stock 

time-
averaged 
(tC/ha) 

CO2e stock 
time-

averaged 
(tCO2e/ha) 

Profitability 
(NPV*, $/ha) 

Rural 
employment 

(workdays/ha/yr) 

Natural forest 250 918 31 5 
Logged forest 200 734 300 15 
Heavily logged forest 120 440 500 25 
Agroforest 1 80 294 300 120 
Agroforest 2 60 185 120 100 
Cocoa 50 147 604 135 
Oil palm  40 183 245 84 
Improved pastures 3 11 618 7 
Low-productivity pastures 2 7 336 5 
Agriculture 8yr fallow 5 18 302 27 
Agriculture 3yr fallow 3 11 409 43 

   * Estimated using a 5% discount rate. 
Sources: Palm, et al. 2004; White, et al. 2005. 

 

53. To illustrate a wide range of carbon-profit relationships, Figure 1.5 plots eleven land 
uses of Indonesia according to their C stocks and NPV profits. Most of the land uses fall 
along a tradeoff arc (green line) ranging from high profitability with low carbon stocks to 
low profitability with high carbon stocks. The graph also identifies the landscape average 
(average C stock and average NPV).  

54. A few points in the lower left corner (red circle) represent low level conditions of C 
stock and profit, such as low-productivity pastures. Converting these low carbon – low 
profit lands into more profitable land uses could be a feasible and attractive REDD+ policy 
priority.  

 
Figure 1.5. Tradeoffs and low-level conditions of NPV profit and carbon stocks  
Source: Swallow, et al. 2008. 
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What is an abatement cost curve? 
55. An abatement cost curve compares the quantity of potential emission reductions with 
their costs (i.e., opportunity, implementation and transaction). The vertical axis represents 
the abatement cost of the emissions reduction option (in monetary units per tCO2e), while 
the horizontal axis depicts the corresponding quantity of reduction (often measured in 
million tCO2e per year). 

56. Besides representing potential REDD+ transactions, an abatement cost curve also 
helps to: 

• summarize the attractiveness and feasibility of REDD+ options in a given 
region or country, 

• clarify potential gains from REDD+ carbon trading.  

57. Abatement, and opportunity, costs can be estimated at different levels: sub-national, 
national, and global, depending upon the scale of a REDD+ program. Figure 1.6 is a 
supposed example of a national abatement cost curve, for Indonesia, which includes 
abatement costs from both agricultural and industrial activities. Nevertheless, this 
“abatement cost curve” only considers direct, on-site opportunity costs (Dyer and Counsell, 
2010). The fact that such a widely shared and well-publicized analysis is not actually of  
REDD+ abatement costs highlights the importance of reviewing methodological 
assumptions. Despite actual abatement costs being higher, arising from implementation 
and transactions costs, the graph is useful for illustrative purposes. 

58. Reduction options associated with REDD+ are highlighted by red boxes. Their relative 
contribution is measured by the width of the respective bars. For example, abatement of 
forest conversion to smallholder agriculture would reduce emissions by approximately 250 
MtCO2e per year, whereas avoiding timber extraction would reduce about 90 Mt CO2e per 
year. Reforestation could reduce emissions by approximately 100 MtCO2e per year (Dewan 
Nasional Perubahan Iklim and McKinsey & Co., 2009).  

59. The differences in opportunity costs can be substantial. The vertical height of each bar 
represents the cost of each option. While reducing forest conversions to low productivity 
slash-and-burn agriculture is estimated to cost less than €2 per tCO2e, the opportunity cost 
of reforestation is approximately €10 per tCO2e and reduced forest conversion to intensive 
agricultural production can cost over €20 per tCO2e. Such cost differences affect feasibility 
of abatement options within national REDD+ programs.  
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Figure 1.6. A national opportunity cost curve (Indonesia) 
Source: Dewan Nasional Perubahan Iklim (National Council on Climate Change) and McKinsey & Co. 2009. 
 
 

60. By representing both the amount of emission reduction and cost per type of land use 
change, an abatement cost curve (representing opportunity, implamentaion and 
transactions costs) can help answer the question: what quantity of CO2 emissions reduction 
may be possible at a carbon price of $X/tCO2e? It can also help to answer the question: which 
emissions reduction options are attractive to the country at a carbon price of $X/tCO2e. 
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A training manual for estimating REDD+ opportunity costs  
61. Opportunity costs can greatly differ per country and within countries. For example, 
the value of timber and agricultural activities depend upon numerous factors including 
market access, soil fertility and rainfall patterns. Production factors such as labor and 
machinery inputs also need to be taken into account when estimating costs.  

62. To address these challenges, the manual provides a systematic approach to identifying 
and analyzing data required to estimate the opportunity costs of REDD+ programs. To 
illustrate the process, the training manual contains detailed presentations of methods and 
assumptions. Below is a summary of the goal, objectives and likely users of the manual. 

Goal 
Countries estimate opportunity costs of REDD+ to help guide national policy. 

Objectives 
1. To provide methods and tools to estimate the opportunity cost of forgoing 

land use changes and fostering enhancements of forest carbon at a national 
level,16 

2. To document case study examples that enable professionals (governmental, 
university, non-governmental) to learn, adapt and use the analytical 
methods, interpret results, analyze different land use scenarios and identify 
optimal national REDD-related policies, 

Likely users 
National-level decision makers and planners involved in REDD+ policy and 
planning  who want to be able to interpret and apply the results of 
opportunity cost studies in REDD+ national plans and international 
negotiations, 

National practitioners and experts involved in studies of opportunity costs 
of REDD+ who want to understand how their own expertise (e.g., agricultural 
and forestry economics, forest ecology, geography, remote sensing, spatial 
analysis) contributes to estimating opportunity costs and associated REDD+ 
policy decisions.  

 
63. Within this manual, we provide guidance on how to gather and analyze the necessary 
information to address questions of the economic viability and other decision criteria 
related to REDD+ programs at a national level. Such non-economic decision criteria include 
effects on biodiversity, water and livelihoods. Central to the analysis is the comparison of 

                                                        
16 And also acknowledging and including the wide range of forests and other land use types found in those 
landscapes. 
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opportunity costs arising from preventing land use changes (e.g., forest to agriculture, 
forest to pastures),  or fostering land use changes (e.g., degraded land to forest).  

64. In order to inform national level decisions, the current land uses are identified 
throughout the country along with drivers of land use change. Since carbon and profit 
levels of all land uses can differ according to bio-physical (e.g., soil quality) and socio-
economic (e.g., distance to markets) conditions, sub-categories of land uses are also 
identified. This also ensures accuracy of the information required to estimate REDD+ 
opportunity costs. With knowledge of the types of land uses, likely future changes in land 
use and the related opportunity costs, REDD+ programs planners can review the 
implications of reducing carbon emission per type and sub-national location of land use. 
The results from these analyses enables countries to become informed of the potential 
costs linked to REDD+ program commitments and thereby identify optimal national 
development strategies.17 

 

Who else may be interested in opportunity costs? 
65. The analytical methods and preparation plans within this manual can help to address 
a variety of questions arising from the concerns of people potentially affected by REDD: 

A government policymaker 
66. Trees make money when cut for timber; under REDD+, they can also make money 
when they remain standing. With carbon payment schemes such as REDD, tree carbon 
becomes an internationally-traded commodity like lumber. Much of our national economy, 
however, depends on cutting trees. Timber companies create jobs and benefit nearby 
towns. If trees are not cut, such economic activities and growth would not happen. 

• What would be the cost to our country and to our citizens of avoiding 
deforestation?  

• How big would the cost be, and who would bear it? 
 

An environmental conservation investor 
67. We want to conserve lands and defend forests from being cleared. The value of carbon 
in these landscapes may be a good incentive to protect forests and watersheds and to 
restore degraded lands.  

• What are the conservation costs, including opportunity costs, of different 
lands?  

• How can environmental benefits from forests, such as biodiversity and water, 
affect decisions about REDD? 

                                                        
17 Optimal is defined as having the most positive qualities, with respect to national objectives. Objectives can 
be numerous, including economic, social, cultural and environmental considerations. 
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A logger, agri-business person, smallholder farmer, rancher 
68. REDD+ programs will impact how I earn my living from the land. My livelihood 
depends on cutting trees clearing forest.  

• How much should I be ask to be compensated? 
 

69. The concept of REDD+ is based on the belief that forests can help mitigate climate 
change only if their protection is viable and attractive within national development 
strategies. Therefore, as countries advance REDD+ preparations, an analysis of future costs 
and benefits of these programs is needed to inform both national and international policy 
decisions. The next section outlines the different approaches used in opportunity cost 
analysis. 
 

 
Box 1.2. Managing big numbers used with C accounting 
Since REDD+ at national or global scale addresses large quantities of carbon, the scientific 
notation frequently used can be unfamiliar and confusing. Even more confusing is that 
sometimes (particularly in the scientific literature) mass is expressed in terms of grams not 
tons (e.g., 1t = 1Mg). The below table summarizes the common notation.  
 
Useful scientific notation for weight measures 

Prefix Abbreviation Scientific notation Equivalent Value 
- t 100 1000 kg 

kilo kt 103 1,000t 
mega Mt 106 1,000,000t 
giga Gt 109 1,000,000,000t 
tera Tt 1012 1,000,000,000,000t 
peta Pt 1015 1,000,000,000,000,000t 

 

Current state-of-the-art in REDD+ opportunity cost analysis 
70. Despite intense efforts of including REDD+ within climate change negotiations, 
relatively little is known about the opportunity costs of REDD. Existing studies can be 
divided into three distinct groups (Boucher, 2008b):  

• Global models: a top-down approach, based on dynamic economic models. 
• Regional-empirical models: a bottom-up approach, which relies on detailed 

empirical analysis of the tradeoffs between economic profits and carbon 
associated with land use change. 

• Area-based models: a per area approach, using a synthesis of sub-national 
and global analyses to generate global estimates. 
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71. The studies differ in the type of questions addressed. The top-down and per area 
approaches emphasize estimating amounts of global emission reductions at specific 
opportunity costs. In contrast, the bottom-up approach (presented in this training manual) 
is typically used for estimating the opportunity costs of specific land use changes. Within a 
REDD+ preparedness context, the bottom up approach answers the question from the 
country perspective. All approaches employ a series of distinct methodological and data 
assumptions. 

Top-down approach (global models) 
72. Top-down approaches evaluate REDD+ economic potential from aggregate economic 
variables. Three research groups have produced the most frequently cited studies: Ohio 
State University, the International Institute for Applied Systems Analysis in Austria (IIASA), 
and the Lawrence-Berkeley National Laboratory.  

73. Kindermann, et al. (2008) and Boucher (2008b) summarize the methods and 
assumptions of the top-down studies. The analytical models share a common approach, 
based on the opportunity costs of different land uses. The models differ, however, in many 
of their details, for example: the economic sectors included, how dynamics of the world 
economy (e.g., forest, agriculture and energy sectors) are simulated, spatial divisions of the 
globe and the interest rates applied. In addition, the models are based on different data 
sets, such as the distribution of carbon densities in world forests and rates of deforestation. 

74. The Ohio State studies apply the Global Timber Model (GTM) – a dynamic model that 
calculates optimal area, tree age class, and management regime for 250 classes of 
forestlands worldwide (Sohngen, et al., 1999; Sohngen and Mendesohn, 2003). The GTM 
model assumes that forest lands are managed for timber production; it does not explicitly 
consider alternative land uses. GTM generally assumes lower opportunity costs than the 
other two models, partly because GTM assumes profits from agriculture and higher C 
stocks on forest land.   

75. The IIASA studies apply the Dynamic Integrated Model of Forestry and Alternative 
Land Use (DIMA). The DIMA model focuses on the allocation of land between forestry, 
grazing and agriculture. The model predicts that deforestation will occur where land value 
in other uses is higher than in forest, and that afforestation will occur where land value in 
forestry is higher than in other land uses.  The resolution of results from the DIMA model 
are based on 0.5° grid cells  (~56x56 km at near the equator). 

76. The Lawrence Berkeley laboratory studies use the Generalized Comprehensive 
Mitigation Assessment Model (GCOMAP). GCOMAP is a dynamic partial equilibrium model 
that analyzes afforestation in short- and long-term tree species and reductions in 
deforestation in ten regions of the world.  

77. Limitations and uncertainties of global modeling efforts include:   
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• Use of average carbon stock estimates, 
• Estimates of forest extent in each region based on imprecise data, 
• Simplistic modeling of land use change (e.g., one type of forest to one type of 

agriculture), 
• Only timber production considered to determine forest value, 
• Lack of country-specific economic data. 

 
Strengths of the global modeling efforts, include: 

• explicit assumptions about future conditions shaping timber models (e.g., 
population pressure) 

• explicit consideration of REDD+ policy effects on timber prices. 
 
78. The three global models produce an array of results (Figure 1.7). Results generally 
reflect the higher productivity and value of agricultural activities in Asia and Latin America. 
With a scenario of reducing emissions from deforestation by 50% between 2005 and 2030, 
opportunity cost estimates range from a low of $1.7/tCO2e in Latin America (GTM) to 
$38/tCO2e in Asia (GCOMAP). The mean opportunity costs for Africa, the Americas and Asia 
were respectively US$2.22, US$2.37 and US$2.90/tCO2e. Differences across the continents, 
however, were not statistically significant (Kindermann, 2008). 

 
Figure 1.7. Carbon price needed to reduce deforestation by 50% in 2030 
Source: Kindermann, 2008. 
 

Bottom-up approach (regional-empirical models) 
79. Bottom-up studies are based on sub-national, on-the-ground, empirical data. Both 
estimates of carbon density (ton/ha) and per-area opportunity cost ($/ha) are specific to 
particular regions or time periods. Thus, opportunity cost estimates depend on the 
availability and quality of local information. 
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80. Over twenty of these studies estimate a few land use changes, not complete supply 
curves (Boucher, 2008b). Much of the empirical base for the opportunity cost analysis in 
this manual was generated in the context of the Alternatives to Slash and Burn program 
(ASB). Swallow, et al. (2007) present sub-national opportunity cost curves for ASB sites in 
Indonesia, Peru and Cameroon. Such studies generate detailed cost curves based on detail 
field research thus requiring fewer assumptions than global models.18 Nevertheless, 
bottom-up approaches do not necessarily take into account global feedback relationships 
that would change prices (e.g., food and timber), and thus costs as a REDD+ system 
develops (Boucher, 2008b).19 

81. Börner and Wunder (2008) used a municipal-level methodology based on official 
Brazilian land-use statistics in a pilot analysis for two federal states. Including additional 
data sources (e.g., profit rates for land use categories, simulated future deforestation 
scenarios, etc.), the approach was extended to the entire Brazilian Amazon (Börner, et al., 
2010). 

Per area approach (area-based models) 
82. The Grieg-Gran (2006) study within the Stern Review is an area-based synthesis of 
data and analysis from eight countries representing the majority of tropical forest (Brazil, 
Bolivia, Cameroon, Democratic Republic of the Congo, Ghana, Indonesia, Malaysia, and 
Papua New Guinea). The approach has a disadvantage of low resolution, thereby limiting 
its use at sub-national level. Furthermore, the opportunity cost estimates lack 
corresponding carbon density estimates, despite sub-national estimates opportunity cost 
information ($/ha) being used to estimate a global per-area cost of reducing 
deforestation.20 The midpoint (US$3.48/tCO2e) of the estimates was 36% higher than the 
mean of the local estimates of the bottom-up approach, due in part to no spatial variation of 
carbon density. The approach, however, permits data on per-area opportunity costs to be 
used for regions where no per-ton carbon costs exist (Boucher, 2008b). 21 

83. Strassburg et al. (2008) conducted a similar study with data from 20 countries. The 
“field approach” used FAO data on forest area and past deforestation rates. Combined with 
global and regional biomass models and data, the analysis estimated carbon content per 
hectare for each country. Two different approaches were used to estimate profits from land 
uses. Recent field data from the top 8 developing countries by annual deforested area were 

                                                        
18 Borner and Wunder (2008) base their analyses largely on official government statistics, possible in Brazil 
because of their availability. 
19 The effect of changing prices and costs can be addressed with sensitivity analysis (Module T). 
20 Termed global-empirical models by Wertz-Kanounnikoff, 2008. 
21 To convert estimates based on area ($/ha) to emissions ($/Co2e), Boucher (2008b) used a conversion 
factor for mean carbon density: 3.94 billion tCO2 of emissions from 10.1 million hectares deforested, from 
Strassburg, et al. (2008). 
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used to estimate a general relationship between deforestation and opportunity costs that 
was then applied to the forest data of each of the 20 countries.  

84. In the other approach, a recent GIS-referenced global map of potential economic 
returns from agriculture and pasture (Figure 1.8; Naidoo and Iwamura, 2007) was overlaid 
with GIS referenced global databases of spatial distribution of deforestation. Results show 
that at very low opportunity cost22  (~US$5.5/t), a mechanism could reduce 90% of global 
deforestation (Strassburg et al. 2008). 

 

 
 
Figure 1.8. Agricultural returns per ha 
Source: Sukhdev (2008) from Strassburg, et al. (2008) based on data from Naidoo & Iwamura (2007). 
 

Three approaches compared 
85. Figure 1.9 summarizes the results of the three approaches. A review of sub-national 
opportunity cost analyses reveals a mean opportunity cost of US$2.51/tCO2e, with 18 of the 
29 estimates at less than US$2. Per area estimates conclude that in order to reduce global 
deforestation by 46 percent, opportunity costs range from US$2.76 to US$8.28/tCO2e. 
Associated investments required to achieve such decreases range from US$5 to 15 billion 
per year. The global models produce much higher estimates of the costs of reduction than 
either the sub-national, empirical estimates or the area-based estimates of the Stern 
Review. Estimates from global models include the effects of local and global price changes 
arising from altered forest and agricultural activities (Boucher, 2008b).  

                                                        
22 Since other costs of REDD+ were not considered, the original phrasing of C02e prices is more like an 
opportunity cost. 
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Figure 1.9. Mean estimates of opportunity cost approaches (and high-low range) 
Source: Boucher, 2008b. 

86. In addition to the differences in opportunity cost per type of emission reduction, costs 
can increase significantly if all deforestation in a region is to be stopped. With the global 
models, smaller reductions in emissions are less costly. A 10% reduction over the same 
period would cost only US$ 1 to 8/tCO2e. In Brazil, Nepstad et al. (2007) estimated that 
eliminating 94% of emissions from deforestation and forest degradation would cost $0.76 
per tCO2e. Costs to eliminate 100% would be nearly double ($1.49 per tCO2e). 

87. For the purposes of generating national-level analysis of REDD+ opportunity costs, the 
bottom-up approach is recommended. Opportunity cost estimates are not only based on 
local information but will also easily fit within analytic frameworks developed by the IPCC 
for land use change (IPCC, 2003) and national inventories of greenhouse gases (IPCC, 
2006). Furthermore, individual countries considering participating in a REDD+ require 
information on what it would cost them to reduce emissions from deforestation, forest 
degradation, and reforestation. Estimates of global costs provide little assistance. Similarly, 
the average approximations of large-scale analyses do not reflect the potentially wide 
range in conditions found within a country (Pagiola and Bosquet, 2009). 

 

88. The next chapter provides an overview of the training manual contents and the 
process of estimating REDD+ opportunity costs. 
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Version 1.3 
 

Chapter 2. Overview and preparations  
 

Objectives 
1. Summarize the content of the training manual, 
2. Identify the people and skills required to estimate REDD+ opportunity 

costs 
3. Assess one’s knowledge of REDD+ opportunity costs, 
4. Provide different tactics for effective manual use, 
5. Introduce a “how-to” process guide for conducting a national REDD+ 

opportunity cost analysis  

6. Identify information needed beforehand in order to estimate opportunity 
costs 
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Structure of the training manual 
1. If estimating REDD+ opportunity costs were simple, a training manual would not be 
needed. Here we explain a process to estimate REDD+ opportunity costs. The approach 
used is based on detailed sub-national data. A strong foundation of empirical information 
helps to substantiate analysis results and support policy decisions. Sampling and 
extrapolation procedures are also shown to generate cost-effective and accurate national-
level estimates of REDD+ opportunity costs.  

2. The manual presents a series of distinct - but related- activities in estimating 
opportunity costs. An initial step is understanding the REDD+ policy context (Chapter 3). 
Topics include an evolving UNFCCC eligibility policy, accounting stance (who pays what 
costs), reference emission levels and nationally-appropriate mitigation actions (NAMAs). 
Although these policies are evolving within the UNFCCC framework, knowledge of them 
helps to link opportunity cost estimates within a larger decision framework. 

3. Chapter 4, opportunity cost analysis begins with identifying and classifying land uses. 
An associated task includes estimating changes in land use – both historical and likely 
future trajectories. This latter component also includes analysis of the drivers of 
deforestation, which helps guide analysis of land use change scenarios and establishing 
reference emission levels. Histories of land use are helpful in identifying future land use 
trajectories. Scenario analysis of trajectories (e.g. business as usual and alternatives) is 
essential in estimating and negotiating reference emission levels of countries within the 
UNFCCC framework. As indicated above, these activities are closely linked to countries’ 
strategic objectives, as defined in national REDD readiness preparation proposals under 
the Forest Carbon Partnership Facility (FCPF) of the World Bank or national joint programs 
under UN-REDD.23 

4. For the entire range of land uses, Chapter 5 shows how to estimate their carbon 
stocks, while Chapter 6 illustrates how to estimate their associated profits. In addition to 
examining a range of land uses, these chapters also discuss how to conduct analysis over 
multiple year time horizons. With Chapter 4, these two chapters are the basic building 
blocks of opportunity cost analysis. It important to note that other REDD+ preparation 
activities may provide data for opportunity cost analysis. For example, countries are 
developing reference scenarios and operational forest monitoring and carbon accounting 
systems at the national level.  

5. Chapter 7 brings together the information for estimating opportunity costs and 
creating an opportunity cost curve (Figure 2.1). The building blocks enable the analysis to 

                                                        
23 That is, land use classification, identification of drivers, and development of historical (and potentially 
future) reference scenarios are part of a country’s REDD+ policy process. 
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advance in two ways – for estimating the vertical (cost) and horizontal (quantity) 
components of the curve.  

6. The vertical axis is based on an opportunity cost (oppcost) matrix, which 
summarizes the opportunity costs for all land use changes in $/tCO2e. This is developed 
from the land use classifications along with associated carbon and profit information.  

7. The horizontal axis also requires land use and carbon information, as represented by 
an emissions matrix. This matrix contains the quantities of emissions for all land use 
changes in terms of tCO2e.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 2.1. Analytical steps for developing an opportunity cost curve 
 
8. In addition, the manual includes discussion of how to improve the precision and 
accuracy of opportunity cost estimates in a step-wise manner, similar to the IPCC Tiers 
(1,2,3). 

9. In this overview, we introduce four of the more important basic components to 
estimating opportunity costs: (1) analyzing land use, (2) measuring carbon, (3) estimating 
profits, and (3) calculating an opportunity cost curve. Throughout the estimation , with 
discussion and critique process, participation of a range of professional expertises and 
scientific disciplines make the analytic approach and results not only more precise and 
accurate, but also more understandable to a wider audience – including those who may be 
affected by REDD+ policy. 
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Analyzing land use  
10. A framework of land use systems is required to estimate opportunity costs of REDD+. 
The word systems is used because land uses  often have multiple activities that my change 
over time. Although identifying and categorizing lands may seem as a straightforward 
exercise, a number of challenges confront researchers and policymakers, including (1) a 
potentially wide array of land uses, and (2) distinguishing between different land use 
systems from remote-sensing imagery.  

11. A mix of national, IPCC and other criteria are used to determine categories. To enable 
systematic and rigorous analysis of REDD+ opportunity costs, land use systems need to be:  

• Unambiguous (pertain to only one land use category), 
• A basis from which to integrate multiple types of data, 

o Carbon-relevant (homogenous in C stock), 
o Profit-relevant (homogeneous in profits),24 
o Policy-relevant (supports the mandates of different national 

agencies), 
• Valid for different versions of RED(D++), 
• Consistent for reporting at multiple scales: global, national, local. 

 
12. Easily observable characteristics of rural areas, both bio-physical (e.g., vegetation, 
elevation, soil quality) and socio-economic (e.g., population density, market accessibility, 
culturally homogeneous areas, etc.) serve as one of the determinants of land use system 
categories. Quantification of land use systems is achieved through a process of identifying 
land covers on maps (typically satellite images) and validating the actual land use systems, 
often by on-site confirmation.  

13. Nevertheless, estimating land use system changes is the basis for REDD+ opportunity 
cost analysis. Past changes are calculated by comparing land use systems from different 
years. Probable future land use trajectories can be determined by extrapolating past 
changes and/or by developing land use models. The quantity of each type of land use 
change affects the estimate of national reference emission levels. 

Estimating carbon and profits 
14. The collected biophysical data and associated estimation methods are largely based on 
the general requirements set by the United Nations Framework Convention on Climate 
Change (UNFCCC). Especially for estimating carbon stocks, the training manual follows the 
available methods provided in the 2003 Intergovernmental Panel on Climate Change 

                                                        
24 Levels of homogeneity to be determined according to impact on results. In some instances, 5-10% 
difference may not greatly affect opportunity cost estimates. The topic of precision and rigor is a matter of 
discussion whereby the costs of data collection and analysis are weighed against the benefits of better 
estimates.  
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(IPCC) Good Practice Guidance for Land Use, Land Use Change and Forestry (GPG-LULUCF) 
and the 2006 IPCC Guidelines for National Greenhouse Gas Inventories for Agriculture, 
Forestry and Other Land Uses (GL-AFOLU) on how to estimate emissions from 
deforestation and forest degradation.  

15. In contrast, socioeconomic data do not have protocols for collection and analysis. 
Similar to biophysical analysis, rigorous data collection, data management and analytical 
methods facilitate the generation of accurate and robust socioeconomic information 
needed to estimate profits of land uses. One important challenge includes taking account of 
how revenues and costs differ over multiple years within a land use system.  

16. Accurate biophysical and socioeconomic information is not sufficient for opportunity 
cost analysis. Equally important the ability to integrate socioeconomic and biophysical 
information of land use systems identified within the analytical framework. In other words, 
the information must be based on the same units of analysis – per hectare with annual data 
transformable into a multi-year analytical framework. To facilitate a better understanding 
and transparency of the process, the recording of contexts, processes and assumptions are 
highly recommended. 

Estimating opportunity costs and other analyses 
17. Opportunity cost analysis of REDD+ generates a money-based representation (e.g., 
$/ha, $/tC or $/CO2e) of the tradeoff between storing carbon and generating profits on 
lands. The graphical representation of this tradeoff, called an opportunity cost curve, is a 
key objective of the analysis. 

18. Opportunity costs estimates are a basis for further analysis and discussion. Such 
topics include: 

• sensitivity analysis of opportunity cost estimates to changes in methods,  
assumptions and data,  

• biodiversity and water co-benefits,  
• scenario analysis of  

o different future land use trajectories,  
o distributional impacts of REDD+ policies and compensation upon  

 land users (e.g., smallholders, plantation owners), and  
 associated economic sectors (timber, agriculture, etc.) 

19. Such analyses related to opportunity cost estimation can help national policymakers 
understand the implication of REDD+ policies. 

Sensitivity  
20. Critical review of a REDD+ opportunity cost analysis also includes an evaluation of the 
data, methods and assumptions used. One way to do so is via sensitivity analysis, whereby 
specific parameters are adjusted, such as technical coefficients (e.g., carbon stock, profit 
estimates). Discussion of sensitivity analysis and exercises are in Chapter 7. 
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Co-benefits 
21. Forests generate other environmental or ecosystem services in addition to storing 
carbon. Such services, or co-benefits, include biodiversity and water. The value of these 
services can be significantly greater than the value of carbon alone, and thereby have the 
potential of lowering the apparent opportunity costs of reducing emissions. Discussion of 
co-benefits and their implications on opportunity cost estimates are within Chapter 8.  

Scenarios  
22. Scenario analysis can reveal how assumptions of future conditions can potentially 
affect estimates of land use, reference emission levels and associated economic-social-
environmental tradeoffs. Related to sensitivity analysis, analysts and policymakers can 
contrast a range of potential policy actions to identify preferable conservation and 
development outcomes. A dramatic rise in food and energy prices, for example, may 
increase incentives to expand agricultural production into forests. Thus, opportunity cost 
estimates would need to be recalculated. Analytical results from updated opportunity cost 
analysis can assist policy development and decision processes. Discussion and exercises 
are found in Chapter 9. 

Conclusions and next steps 
23. Reviews to and revisions of opportunity cost estimates should be conducted as new 
technical evidence becomes available (e.g., improved estimates of carbon stocks), when 
significant shifts in market conditions occur or changes in REDD policy. The opportunity 
cost models can be used for scenario analysis on an on-going basis. Discussion of revised 
analyses, communication of results and next steps is in Chapter 10. 

Who should do the work? 
24. Estimating the REDD+ opportunity costs requires a wide variety of expertises. 
Moreover, the scope of the work required at the national level is beyond what can be 
managed by one or two people. Therefore, a first step is getting the correct people and 
organizations involved. Only then can a country be assured that they can generate valid 
opportunity cost estimates, critique the methods used to reach the findings, and prepare 
the best national strategy for participating in REDD+ funds and marketplaces.  

25. The chapters in this manual help countries identify the team of both analytic and 
policy-oriented people required to estimate REDD+ opportunity costs. The team needs the 
skill from different scientific disciplines and professional backgrounds to work together, 
such as forestry, economics, agriculture, geography, and policy.  

26.  Since many are likely to be affected by REDD+, others may want to be aware and 
participate, such as ecologists, hydrologists, community activists, and private sector. 
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Therefore, country teams will need to decide how best to balance the benefits of obtaining 
additional perspectives and insights with the costs of coordinating numerous contributors. 

A national REDD+ analytic and policy team 
27. National experts involved in REDD+ research and policy analysis should estimate 
opportunity costs. Since no one person, or even government agency, can do all of the above, 
a national REDD+ team needs the expertise of: 

1. geographers / spatial analysts to map land uses and changes,  
2. foresters and carbon specialists to measure carbon in land uses, 
3. agricultural and forest economists to estimate profits of land uses, 
4. hydrologists and biodiversity specialists to estimate possible co-benefits, 
5. sociologists to help identify possible adverse social consequences, and 
6. national REDD+ administrators to identify policy responses. 

28. Participation of personnel within government agencies fosters discussion REDD+ 
concepts and helps to link directly with decisionmakers and policymakers (Box 2.1). Non-
government organizations and university staff can help ensure continuity and resilience of 
analytic capacity, since personnel within government agencies can change frequently. Rural 
community-based organizations and the private sector may also wish to be involved.  
 
Box 2.1. Opportunity cost analysis as a boundary object 
An opportunity cost analysis is a boundary object that facilitates communication between 
science and policy. Many IPCC reports, for example, are boundary objects.  Boundary 
objects must meet stringent demands. Their content must be credible and open to scrutiny, 
while the presentation is sensitive to the needs of policymakers at sub-national, national 
and international levels.  

Working together helps communication and understanding. Crunching numbers, filling 
databases and generating numbers is not sufficient. Nor is quickly reading final reports and 
attending policy meetings. The process of estimating opportunity costs requires discussion 
amongst scientists and policymakers. 

On the way to generating opportunity cost curve estimates, other intermediate boundary 
objects need to reconcile different levels of understanding: amongst academic distinct 
disciplines, professional expertise and the policy interests. Some of the most important 
boundary objects in opportunity cost analysis are the national typology of land use systems 
or map legend that serve as the skeleton of the analysis. We foresee a stepwise and iterative 
learning process to derive an appropriate land use typology.  

The overall analysis approach can benefit from the Millennium Ecosystem Assessment and 
similar multidisciplinary efforts intended for wider audiences. Participation of 
policymakers in during the work in-the progressing work enables them to express 
concerns, need and make suggestions to be shared. This collaborative approach can make 
the final results more meaningful, useful and compelling. 
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Ways to use this manual 
29. Achieving proficiency in REDD+ opportunity cost analysis requires different levels of 
investment, depending on the person involved. Given the quiz above, you probably have a 
better idea of what type of knowledge could be of use. In the list below, see which objective 
best matches yours, and identify the likely time investment required:  

I need to: 

• quickly read to confirm my knowledge (10 – 40 min); 

• read to learn something important (1 hour – 1 day), enough to know: 

o who should participate in the training workshops, 

o who should be part of the national REDD+ analytic and policy team; 

• thoroughly read to be familiar with a few of the subjects in order to question 
findings, and policy implications (1.5 – 5 days). 

• read, participate in a workshop and practice with examples in order to be well-
versed with all the subjects required to critically question findings, analytical 
methods, and policy implications (5 – 15 days). 

 

Box 2.2. Do I know enough already? 
The topic of REDD+ opportunity costs can be confusing and difficult to understand. Some 
words and terms may be new. How many do you know? 

• Ground-truth – minimum mapping unit – land use trajectory 
• Discount rate – net present value – accounting stance 
• Reference emission level – business as usual  
• Carbon flux  – allometric equation 

If you feel comfortable with all these terms, you are a rare person. You earned a score of 10 
of 10. For the rest of us, including us authors, understanding the complex and sometimes 
subtle workings of REDD+ opportunity costs requires a time investment. The contents of 
this manual and practice exercises will help us reach a high level of expertise.  

 
 

Likely topic priorities per expertise 
30. National decisionmakers and policymakers would benefit from an ability to 
interpret, critique and apply the results of opportunity cost studies.  Such capacity is 
necessary to know what policies are needed to develop REDD+ national and sub-national 
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plans. To achieve such capacity, the information contained the following chapters are 
considered important within the manual:  

o Introduction 
o Overview and preparations 
o REDD+ policy context 
o Opportunity cost analysis  
o Tradeoffs and scenarios 
o Conclusions and next steps 

31. Sub-groups of the national REDD+ analytic and policy team would concentrate on 
chapters intended for specific analyses. The following chapters need inputs from the 
following types of experts: 

o Land use & land use change: remote sensing experts, geographers 
and land use planners; 

o Carbon: foresters, agronomists, carbon measurement specialists; 
o Profitability: agronomists, foresters, economists, sociologists; 
o Water & Biodiversity Co-Benefits: hydrologists, ecologists, 

sociologists, economists. 

 

Process of estimating opportunity costs  
Improving accuracy and precision 
32. Although countries may not have all the data required to estimate a wide range of 
opportunity costs, information may be available on similar land use systems in other 
countries. A preliminary analysis can generate approximate opportunity cost estimates, 
mirroring the three tier system used by the IPCC for estimating carbon stocks. 

33. A recurring challenge of estimating REDD+ opportunity costs is improving their 
accuracy and precision. Since the carbon price received is likely to be significantly higher 
for better (substantiated) estimates, a stepwise process with increasing levels of time and 
money investments is recommended, analogous to the IPCC Tier 1, 2, 3 approach (Box 2.3). 
Nevertheless, per agreements reached in Cancun, the Subsidiary Body for Scientific and 
Technological Advice (SBSTA of the UNFCCC) will define C-accounting rules and MRV etc. 
for national REDD+ systems. The rules may supersede or complement the IPCC Good 
Practice Guide. 
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Box 2.3. IPCC reporting tiers 
Tier 1:  Basic estimation methods and existing data are used. Default values can be used 
when data is unavailable (e.g., from the IPCC emission factor database). Data are often 
spatially coarse (e.g., estimates of deforestation rates), and have large error range (e.g., 
~70% for aboveground biomass). 

Tier 2: Intermediate estimation methods use country-defined emission factors and 
activity data within the same approach as Tier 1. Estimates for specific regions and land 
use categories typically require higher-resolution activity data, which need to be collected. 

Tier 3:  Rigorous estimation methods, such as measurement systems and models, are used 
repeatedly over time and adjusted to reflect national characteristics. Areas of land use 
change are monitored. High-resolution activity data is collected with analysis 
disaggregated at the sub-national or district level. Parameterized models with plot data can 
be used to analyze all carbon pools. Models typically go through quality checks, audits and 
validations. Models may incorporate a climate dependency factors and can provide 
estimates of inter-annual variability.  

Source: Adapted from Havemann, 2009 and IPCC,  2003.  

34. To increase the level of analytical precision and accuracy , the REDD+ analytic and 
policy team can follow a requires an iterative process of data identification and collection. 
Tier 1 - type analysis generates initial estimates that provide an initial sense of the orders 
of magnitude regarding opportunity costs. With these results, targeted efforts can improve 
key aspects of the information required for analysis, which might use either Tier 2 or Tier 3 
methods, or a mix, depending on time and resources available, country land use context 
and the potential benefits of improved estimates. 

 

Opportunity costs analysis within a REDD+ readiness process 
35. Despite opportunity cost analysis not being required explicitly with REDD+ readiness 
processes, opportunity cost estimates inform the formulation of national REDD+ strategy. 
The inquiry process, analytical results, and critical review from stakeholders helps to 
identify optimal national strategies within Readiness Preparation Proposals (RPPs), 
presented to the FCPF of the World Bank (see FCPF, 2009; FCPF and UN-REDD, 2010). In 
addition, some investment and operating costs can be shared across other REDD+ 
preparations, such as collecting data and associated analytical frameworks for reference 
emission levels (RELs) and carbon measurement, reporting, and verification (MRV).  

36. While speedy availability of results is valuable for informing decisions, accurately 
estimating opportunity costs requires substantial data inputs and rigorous analytical 
methods. If the needed data is not readily available, significant investments of time and cost 
can be made as Tier 1 or 2 type analyses are be advanced.  
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37. REDD+ preparation is a process, and countries can be at different stages. Figure 2.2 
summarizes three phases for implementing a comprehensive REDD+ program and 
associated levels of opportunity cost analysis. The phased approach allows policymakers to 
have important information in a timely manner in order to support discussion of potential 
REDD+ impacts within REDD+ readiness, consultation, consensus building, strategy 
development and negotiation processes (REDD+ Phase 1). Improved opportunity cost 
results will also help with policy design and implementation within national development 
strategies (REDD+ Phase 2).  

38. During these phases, some of the technical information (e.g., profitabilities, carbon 
stocks) may indeed be general estimates applied to national conditions. As a country moves 
up the tiers, increasing amounts of national and sub-national technical information is 
required. Matured opportunity cost analysis enables countries to improve REDD+ policy 
effectiveness and efficiency (REDD+ Phase 3). Government ownership of the process and 
commitment from key actors in a country are important for successful REDD+ planning and 
implementation. 

 
Figure 2.2. Stages of opportunity cost analysis within REDD+ program development 
Source: Authors. 
 

39. Table 2.1 provides a summary of tasks and associated expertise needed to accomplish 
them. Within the table, tasks appear in the rows and the required expertise are represented 
by the columns. Some tasks only require one type of expertise and can be advanced without 
much collaborative input from other members of the national REDD+ team. Given the 
nature of REDD+ opportunity cost analysis, however, many tasks require participation of 
different types of professionals.  

PHASE  1 
Preparation and  

Readiness 

PHASE  3 
Performance - 

based Payments 
PHASE  2 

Early Action 

 REDD Strategy Development 
- 

Capacity Building 
- 

Institutional Development 
- 

Demonstration Activities 

Quantified Emission  
Reductions 

CERs 
- 

Full REDD Implementation  
Mode 

- 
Benefit Sharing 

Piloting and Testing of  
Strategies 

- 
Capacity Enhancement 

- 
Development of REDD+ 

Project Portfolio 
- 

Setting Reference Levels and  
MRV Infrastructure  

Opportunity Cost  
Tier  1  or  2 

For negotiation support  
and REDD planning 

Opportunity Cost  
Tier  2  or  3 

For Policy Design and  
Implementation 

Opportunity Cost  
Tier  3 

For improved effectiveness  
and efficiency in REDD+  

Implementation 
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40. Independent tasks have only one colored cell, whereas collaborative tasks requiring 
meetings have multiple colored cells. National workshops can be divided into sub-national 
workshops to focus on different contexts within a country.  

 

What information is needed upfront? 
41. To estimate the opportunity costs of REDD+ at the national level, a country will need 
to know:  

• the area of all land uses (e.g., agriculture, pastures, forest), 

o and likely future land uses (i.e. trajectories), 

• the profits of all land uses in the country (e.g., agriculture, forests, pastures etc.), 

• the carbon stock of each type of land use, 

(also helpful: information on co-benefits of water & biodiversity). 

In other words, three sets of information are the building blocks. Fortunately, all this work 
does not need to start from zero. Many studies typically exist within a country that can be 
used, including National Biodiversity Strategy and Action Plans (NBSAP) and National 
Action Plans for Climate Change (NAPCC), national forest plans and other land use planning 
information. Information on the profitability of at least some land use systems is often 
available from Ministries of Agriculture and/or producer groups. 

42. By using existing data, collecting new data, conducting analyses and reviewing results, 
the team will be able to estimate the opportunity costs of REDD+ (and other costs of 
REDD+, the training manual contains guidance on this too.)  

Technical and analytic support 
43. Support for the training material and workshops on REDD+ opportunity costs is part 
of the Forest Carbon Partnership Facility (FCPF) effort to test and evaluate different 
approaches to REDD+ in tropical and subtropical countries. Opportunity costs are within 
issues identified in Step 4 (Planning: Define the issues to consult on) of the FCPF technical 
guidance on how to prepare an effective consultation and participation plan (FCPF, 2009).   
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Version 1.3 
 

Chapter 3. RED(D++) policy context 
 

Objectives 
1. Provide a background on REDD+ eligibility policy 
2. Introduce the concept of reference emission level (REL) 
3. Discuss issues of accounting stance 
4. Present the concept of nationally appropriate mitigation actions (NAMAs) 
5. Introduce WB safeguards relevant to REDD+ 
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1. Terms and phrases that are commonly used when discussing REDD+ policy are in Box 
3.1. For definitions, see Glossary in Appendix A.  

 REDD+ policy words 
Deforestation 
Degradation 
AFOLU/REALU 

Baseline 
Removal 
LULUCF 

Business as usual 
Reference emission level 
Additionality

 
 

2. A chapter on REDD+ policy could span dozens of pages. Here we briefly present five 
REDD+ policy issues that are linked with opportunity cost analysis: 

• Eligibility policy – what types of land use changes qualify within the terms of 
REDD+ endorsed by the UNFCCC, 

• Accounting stance – the perspective from which costs and benefits are estimated, 
typically individual groups, government agency or national.  

• Reference emission level – a future optimal emission level of a country, based on 
carbon prices and opportunity costs, thereby identifying the line between a good 
and bad REDD+ market transactions. 

• Nationally Appropriate Mitigation Actions (NAMAs) – are a set of policies and 
actions that countries undertake as part of a commitment to reduce greenhouse gas 
emissions. Countries may take different actions on the basis of equity and in 
accordance with common, but differentiated, responsibilities and respective 
capabilities. 

• Safeguard policies – provide guidelines for the World Bank and clients in the 
identification, preparation, and implementation of programs and projects. Safeguard 
policies have often provided a platform for the participation of stakeholders in 
project design, and have been an important instrument for building ownership 
among local populations.  

An evolving REDD+ eligibility policy 
3. REDD+ is maturing. REDD+ itself is an evolving concept whereby rules, regulations 
and other matters continue to be develop, debated, and improved. Since the Montreal 
Conference of Parties (COP) in 2005, the United Nations Framework Convention on Climate 
Change (UNFCCC) Parties have held extensive discussions regarding the scope of REDD. 
The UNFCCC talks began with RED (i.e. limited to only deforestation25) and expanded to 

                                                        
25 Changing carbon-rich forest land into another land use with lower carbon stocks. 
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REDD taking into consideration forest degradation (which does not involve a land use 
change from forest land to non-forest land).  

4. The discussion next broadened to also consider forest conservation, sustainable forest 
management, and enhancement of forest carbon stocks (REDD+). In Bali December 2007, 
the parties to the UNFCCC confirmed their commitment to addressing global climate 
change, yet an agreement on REDD+ was not reached. Advances were made towards an 
agreement including reference to REDD, 26 calling for: 

Diverging opinions to continue debate whether a primary set of deforestation/ 
degradation measures should be established, with a secondary set for other 
forest-based mitigation options (REDD+).  

5. Agreement has not yet been reached on whether the Parties intend “enhancement of 
forest carbon stocks” to be forest restoration only on lands already classified as forests, or 
also include forestation of non-forest land.27 During the COP16/CMP6 in Cancun, the Ad 
Hoc Working Group on Long-term Cooperative Action (AWG-LCA) of the UNFCCC adopted a 
mechanism that encourages developing countries to contribute to mitigation actions in the 
forest sector by the full scope of REDD+ activities (reducing emissions from deforestation, 
from forest degradation, conservation of forest carbon stocks, sustainable management of 
forest, enhancement of forest carbon stocks).  

6. Although not discussed at the UNFCCC level, a long-term vision remains for 
comprehensive carbon accounting across the entire spectrum of Agriculture, Forest, and 
Other Land Uses (AFOLU), also known as Reducing Emission from All Land Uses (REALU) 
or REDD++.28 The definition of forest also may have implications on REDD+ (see Box 3.2  
for details on what is considered forest).  

Box 3.1. What is a forest and does the name matter? 
The agreed forest definition of the UNFCCC within the Kyoto protocol has three significant 
parts:   

1) Forest refers to any area of at least 500m2 (0.5ha) and a country-specific 
choice of a threshold canopy cover (10-30%) and tree height (2-5 m), 

2) The above thresholds are applied through ‘expert judgment’ of ‘potential to 
be reached in situ’, not necessarily to the current vegetation status, 

3) Temporarily unstocked areas (with no specified time limit ) remain ‘forest’ as 
long as national forest entities claim that such areas will, can or should 
return to tree cover conditions. 

 

                                                        
26 UNFCCC Decision 1/CP.13, UNFCCC Decisions 2-4/CP.13, Decision 2/CP.13 dedicated to REDD. 
27 The option will require policies and efforts to avoid double counting with eligible clean development 
mechanism (CDM) afforestation/reforestation projects. 
28 The second + can have different meanings, depending on a person or context.  It used to imply 
afforestation/reforestation, social safeguards, and REALU (Frey, 2010; personal communication). 
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Parts 2 and 3 were added to restrict the concept of re- and afforestation and allow ‘forest 
management’ practices including clear felling followed by replanting to take place within 
the forest domain. The above forest definition has a number of counter-intuitive 
consequences (van Noordwijk and Minang, 2009), such as: 
 

• Conversion of forest to oil palm plantations may not be considered 
deforestation; such plantations can meet the definition of forest, 

• There is no deforestation in countries where land remains under the 
institutional control of forest agencies, and is considered only ‘temporarily 
unstocked’; 

• Swidden agriculture and shifting cultivation can be removed from the list of 
drivers of deforestation, as long as the fallow phase can be expected to reach 
minimum tree height and crown cover; 

• Most tree crop production and agroforestry systems do meet the minimum 
requirements of forest; whereas unpruned coffee, for example, can reach a 
height of 5 m; 

• The current transformation of natural forest, after rounds of logging, into 
fastwood plantations can occur fully within the ‘forest’ category; 

• A substantial part of the peatland emissions may not fall under forest-related 
emission prevention rules if the associated deforestation is claimed before a 
cut-off date yet to be specified. 

• Substantial tree-based land cover types fall outside of the current 
‘institutional’ frame and jurisdiction of ‘forests’, and require broad-based 
implementation arrangements. 

 
Although no single definition of forest can provide a ‘clean’ separation of forest and non-
forest within the continuum of land uses, such a definition is likely not needed for the 
concept of REDD+ to advance. A draft version from the Ad Hoc Working Group on Long-
term Cooperative Action (AWG-LCA) of the UNFCCC (2009a) text  states: 
 
the following safeguards should be [promoted and supported] [ensured]: 
  … 
(e) Actions that are consistent with the conservation of natural forests and biological 
diversity, ensuring that actions referred to in paragraph 3 below are not used for the 
conversion of natural forests [into plantations, as monoculture plantations are not forest], but 
are instead used to incentivize the protection and conservation of natural forests and their 
ecosystem services, and to enhance other social and environmental benefits;[1] 
 
In sum, the implications for the categorizing something as forest or non-forest may be 
unimportant if forest degradation is included.  A forest definition will affect reporting 
procedures, not actions on the ground.  To estimate REDD+ opportunity costs, associated 
levels of carbon and net earnings of degraded and improved forests can be calculated. 
 
[1] Taking into account the need for sustainable livelihoods of indigenous peoples and local communities and their 
interdependence on forests in most countries, reflected in the United Nations Declaration on the Rights of 
Indigenous Peoples and the International Mother Earth Day. 
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7. Opportunity cost analysis of land use changes, both avoided (e.g., forest preserved) 
and achieved (e.g., forest restored), will enable countries understand the potential benefits 
of REDD+. Such benefits are not only economic, but also include water and biodiversity co-
benefits that could be substantially affected by REDD+. In other words, REDD+ policies 
have the capability of altering national forests, agriculture, and livestock production along 
with affecting the national provision of environmental goods and services of water and 
biodiversity resources. In sum, countries will want to know how altered eligibility rules 
affect achievable emission reductions from avoided and achieved land use changes. 

Who pays what costs: accounting stance 
8. Identifying who pays the costs, and receives benefits, of REDD+ is essential to 
understanding how a policy will function. For national REDD+ program, three types of 
perspectives are important to recognize: (1) individual groups or actors, (2) national or 
country, and (3) government agency. The mixing of these perspectives can lead to 
estimation errors that potentially misinform policy decisions. The perspective from which 
impacts are estimated is termed an accounting stance.29   

9. The accounting stances of REDD+ policy can be identified by other names. The 
perspective of individual groups is also known as a private or financial accounting stance, 
whereas, a national perspective can be termed social or economic (Table 3.1). For purposes 
of estimating the opportunity costs of REDD+, the terminology has been adjusted to avoid 
confusion. (The term social costs is more aligned with socio-cultural costs associated with 
non-economic livelihood impacts, such as psychological, spiritual and emotional – as 
mentioned in the Introduction).   

 
Table 3.1. Contrasting names for accounting stances 

Country/National = Social = Economic  

Individual groups = Private = Financial 

Pagiola & Bosquet, 2009  Monke & Pearson, 1989  Gittinger, 1982 

 

10. Three important differences exist between the accounting stances. One refers to what 
costs and benefits to include within calculations. A national accounting stance includes 
all costs that are received within the country, net of any benefits that are received 
anywhere within the country, omitting any costs and benefits that accrue outside the 

                                                        
29 This presentation is adapted from Pagiola and Bosquet, 2009. 



 
 

 3-6 

country.30 In contrast, the perspectives of individual groups and of the government only 
include specific costs and benefits that these groups receive. (The distribution of REDD+ 
costs is discussed further below.) 

11. The second difference refers to how costs and benefits are calculated. Under the 
national perspective, costs and benefits are valued at the social value of resources (their 
value in their next-best alternative use) rather than at their observed market prices. In 
some countries, these prices may differ either because of policy distortions (e.g., taxes, 
subsidies, trade restrictions, etc.) or because of market imperfections (e.g., monopoly 
power, externalities,31 or public goods). In contrast, costs to individual groups are valued at 
the prices that these groups actually pay, including taxes. Years ago, the difference between 
social values and observed market values was quite significant. Governments would 
systematically distort the prices, especially of agricultural inputs and outputs. As a result of 
reform processes, such distortions are typically less, yet can persist to different degrees 
according to country.  

12. The third difference refers to the discount rate used to assess future costs and 
benefits. A national perspective should use the social discount rate normally applied by the 
government. In contrast, the discount rate for individual groups should reflect market rates 
or their individual rate of time preference. These rates can be represented by a bank loan 
rate, if credit is available, or other (often higher) rates if no credit is available. The topic of 
discount rates is discussed further in Chapter 6.  

13. From the country’s perspective, all REDD+ costs have to be taken into consideration, 
including opportunity costs (including, where relevant, social-cultural and indirect costs) 
as well as implementation and transaction costs (Table 3.2). Nevertheless, some of these 
costs are cancelled out since they are simply transfers within the country. For example, 
although a government payment to forest owners is a cost to government, it is also a 
benefit to the landowner. The administrative cost, however, remain a cost to the country. 

14. Individual groups, in contrast, typically are only aware of a subset of REDD+ costs, 
primarily opportunity costs (again, including socio-cultural and indirect costs where 
relevant), although in some cases they may also face some of a REDD+ program’s 
implementation costs.32  

 

                                                        
30 Examples of benefits realized primarily outside the country include the climate change mitigation benefits 
of carbon sequestration and biodiversity conservation. 
31 Externalities are the consequences of an action that affect someone other than the decisionmaker, and for 
which the decisionmaker is neither compensated nor penalized. In the context of forest management, impacts  
such as sedimentation, biodiversity loss, greenhouse gas emissions are externalities. 
32 An illustrative example comes from a payment for environmental service program in Costa Rica. 
Individuals were responsible for the costs of preparing management plans, fencing and locating signposts, 
and monitoring by independent organizations (Pagiola, 2008; Pagiola and Bosquet 2009). 
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Table 3.2. Type of REDD+ cost to be included per accounting stance 

Cost category Individual Government 
agencies Country 

Opportunity     
Implementation *   
Transaction    

  * denotes a cost that may be partially assumed by individuals. 
 
15. Government agencies will assume a number of budgetary costs. Such costs typically 
include administrative, transaction, and implementation costs. In considering 
implementation costs, it is important to bear in mind that a large portion may consist of 
transfers, depending on how efforts to reduce deforestation are implemented. Any portion 
of budgetary costs which compensate individual landholders for their opportunity and 
other costs would be a transfer, and as such this portion would not be considered an 
economic cost to the country. (For more on this subject, see Pagiola and Bosquet, 2009, and 
Chapter 6 on Estimating the profits from land uses.) 

 

Reference emission levels 
16. How much emission reduction can be achieved at a specific carbon price? The answer 
to this question enables a country to identify and negotiate a reference emission level 
(REL) – a basis from which a country commits to reduce emissions. The REL is an 
important component of REDD+ preparation because:  

• If a country reduces deforestation too little, it will miss opportunities to increase its 
net REDD+ revenues.  

or 

• It is possible for a country to reduce deforestation ‘too much’ – that is, to reduce 
deforestation at a cost that is higher than the compensation it receives through 
REDD+.  

17. Figure 3.1 illustrates the above cases. The abatement level A* (on the horizontal axis) 
is the quantity at which the carbon price P* (on the vertical axis) is equal to REDD+ costs. 
At this level of abatement, the country receives a REDD+ payment the area of the rectangle 
0P*mn. To reach this level of abatement, it faces costs equal to the area under the 
abatement curve up to A*. The difference between these costs and the REDD+ payment are 
a net benefit to the country (known as a ‘rent’ or a ‘producer surplus’). Should a country 
reduce fewer emissions by less than this level (for example, abatement level A1), it would 
give up some of this potential rent (the area of the triangle tsm). Conversely, if the country 
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chooses an abatement level higher than A* (for example, A2), it will face additional costs 
that are not compensated by the additional REDD+ income (area nmwv).   

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. REDD+ rents and costs 
Source: Authors. 
 

18. It is important to note, however, that agreements on payment mechanisms and 
associated rules have not yet been reached. Thus, such REDD+ rents may not be structured 
exactly as explained above. For more on reference emission levels see Angelsen (2008, 
2009) and Meridian (2009). 

Nationally Appropriate Mitigation Actions (NAMA) 
19. The term Nationally Appropriate Mitigation Actions (NAMA) is based on the concept 
that different countries take different nationally appropriate actions on the basis of equity 
and in accordance with common but differentiated responsibilities and respective 
capabilities. The concept is also linked with financial and technical assistance from 
developed countries to developing countries to reduce emissions. REDD can be seen as a 
subset of NAMA. 

20. NAMA became part of the international agenda through its inclusion in the Bali 
roadmap, at COP13, alongside REDD. The Bali Action Plan of COP13 was centered on four 
main building blocks: (1) Mitigation, (2) Adaptation, (3) Technology, and (4) Financing. 
NAMA formed an important part of the mitigation component. Future discussions on 
mitigation were to address:  

• Measurable, reportable and verifiable nationally appropriate mitigation actions 
or commitments (NAMA) by all developed countries, and 

• Nationally appropriate mitigation actions (NAMAs) by developing country 
Parties, supported and enabled by technology, financing and capacity-building, 
in a measurable, reportable and verifiable manner. 
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21. Initially, interest in NAMA articulation was less than that in REDD since no financial 
mechanisms existed for international support. Although the COP15 in Copenhagen did not 
result in binding agreements, countries were asked to express their national commitments, 
in a context where international investment would be linked to such commitments (but 
without imposing a hard conditionality). In Cancun, agreement was reached to officially 
recognize NAMAs under the multilateral process. An international registry will be 
developed with the purpose of recording and matching developing country mitigation 
actions with finance and technology support.  

22. In Indonesia, for example, the NAMA concept has become the major driver of the 
national climate change policy, with the REDD activities embedded within broader efforts 
to reduce emissions and other aspects of economic development. Indonesia has a NAMA 
commitment to reduce its emissions by 26% relative to a 2020 business as usual scenario. 
This is now the basis of the concept of an ‘own commitment’ NAMA to be linked with an 
‘international co-investment’ NAMA.  

23. A challenge remains in achieving Globally Appropriate Mitigation Actions (tentatively 
called GAMA) and Locally Appropriate Mitigation Actions (LAMA). Both are connected to 
NAMA as a concept for articulating “common but differentiated responsibility” within the 
UNFCCC principles.  

 SESAs and safeguard policies of the World Bank 

24. A number of World Bank safeguard policies may affect national REDD+ strategies and 
implementation. These policies are also reflected within a Strategic Environment and Social 
Assessment (SESA) of an RPP (Forest Carbon Partnership Facility, 2010). World Bank 
safeguards and SESAs are two mechanisms that enable a REDD Country Participant to 
identify likely impacts and risks, as well as opportunities, and consequently make more 
informed and appropriate choices between strategic options.33 

25. Environmental and social safeguard policies are a cornerstone of the World Bank in its 
support to sustainable poverty reduction. The objective of the policies is to prevent and 
mitigate undue harm to people and their environment in the development process. The 
policies provide guidelines for bank and borrower staffs in the identification, preparation, 
and implementation of programs and projects. Safeguard policies have often provided a 
platform for the participation of stakeholders in project design, and have been an 
important instrument for building ownership among local populations. The following are 
some of the more relevant safeguard policies to REDD+.34  

                                                        
33 FCPF. 2010. RPP template. Version 4  
34 For a complete list and explanation, see: 
http://web.worldbank.org/WBSITE/EXTERNAL/PROJECTS/EXTPOLICIES/EXTSAFEPOL/0,,menuPK:584441
~pagePK:64168427~piPK:64168435~theSitePK:584435,00.html 

http://web.worldbank.org/WBSITE/EXTERNAL/PROJECTS/EXTPOLICIES/EXTSAFEPOL/0,,menuPK:584441~pagePK:64168427~piPK:64168435~theSitePK:584435,00.html
http://web.worldbank.org/WBSITE/EXTERNAL/PROJECTS/EXTPOLICIES/EXTSAFEPOL/0,,menuPK:584441~pagePK:64168427~piPK:64168435~theSitePK:584435,00.html
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Involuntary resettlement 
26. Involuntary Resettlement35 is triggered in situations involving involuntary taking of 
land and involuntary restrictions of access to legally designated parks and protected areas. 
The policy aims to avoid involuntary resettlement to the extent feasible, or to minimize and 
mitigate its adverse social and economic impacts. 

27. The policy promotes participation of displaced people in resettlement planning and 
implementation, and its key economic objective is to assist displaced persons in their 
efforts to improve or at least restore their incomes and standards of living after 
displacement. The policy prescribes compensation and other resettlement measures to 
achieve its objectives and requires that borrowers prepare adequate resettlement planning 
instruments prior to Bank appraisal of proposed projects. 

Indigenous peoples 
28. The World Bank policy on indigenous peoples36 underscores the need for Bank staff 
and participating countries to identify indigenous peoples, consult with them, ensure that 
they participate in, and benefit from Bank-funded operations in a culturally appropriate 
way - and that adverse impacts on them are avoided, or where not feasible, minimized or 
mitigated. 

Natural habitats 
29. The policy on Natural Habitats37 seeks to ensure that World Bank-supported 
infrastructure and other development projects take into account the conservation of 
biodiversity, as well as the numerous environmental services and products which natural 
habitats provide to human society. The policy strictly limits the circumstances under which 
any Bank-supported project can damage natural habitats (land and water areas where 
most of the native plant and animal species are still present). 

30. Specifically, the policy prohibits Bank support for projects which would lead to the 
significant loss or degradation of any Critical Natural Habitats, whose definition includes 
those natural habitats which are either:  

• legally protected, 
• officially proposed for protection, or 
• unprotected but of known high conservation value. 

31. In other (non-critical) natural habitats, Bank supported projects can cause significant 
loss or degradation only when 

                                                        
35 Operational Policy 4.12 
36 Operational Policy (OP)/Bank Procedure (BP) 4.10 
37 Operational Policy 4.04 
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i.  there are no feasible alternatives to achieve the project's substantial 
overall net benefits; and 

ii. acceptable mitigation measures, such as compensatory protected areas, 
are included within the project. 

Projects in Disputed Areas 
32. Projects in Disputed Areas38 may affect the relations between the Bank and its 
borrowers, and between the claimants to the disputed area. Therefore, the Bank will only 
finance projects in disputed areas when either there is no objection from the other 
claimant to the disputed area, or when the special circumstances of the case support Bank 
financing, notwithstanding the objection. The policy details those special circumstances. 

33. In such cases, the project documents should include a statement emphasizing that by 
supporting the project, the Bank does not intend to make any judgment on the legal or 
other status of the territories concerned or to prejudice the final determination of the 
parties' claims. 
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Chapter 4. Land use & land use change 
 

Objectives 
Show how to: 

1. Develop a national land use framework and legend, 
2. Create land use maps, 
3. Validate land use maps, 
4. Estimate land use change, 
5. Explain land use change. 
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Introduction  
1. This chapter describes how to classify land uses, estimate land use change, and explain 
land use change, thereby providing vital information for opportunity cost analysis. The 
approach is based on identifying different land use systems common within a country. 
These land use systems range from forests to agriculture, pasture, and urban areas.   

2. A series of steps are presented to generate land use maps and assess land use change. 
In addition, the chapter explains how to acquire, organize, and classify remote sensing data 
and how to validate the accuracy of the derived maps. The approach described in this 
module is largely based on the GOFC-GOLD REDD Sourcebook, which should be consulted 
for in-depth guidelines on land use and land cover mapping (GOFC-GOLD, 2009). For 
detailed technical information related to developing land use maps, the chapter directs 
practitioners to additional sources. Deforestation monitoring and MRV activities should be 
consistent with other studies employing similar methods, independent of the scale and 
detection technologies used. For predicting land use change, important to develop 
scenarios, different modeling approaches are briefly presented.  

3. In sum, this chapter provides guidance to produce the following outputs for 
opportunity cost analysis: 

1. Land use framework and accompanying legend, 
2. Land use maps of different dates, 
3. An error analysis to assess the accuracy of the maps, 
4. Land use change matrices, 
5. Deforestation drivers and land use transitions 
6. Predicting land use change 

4. Land use analysis has its own vocabulary. For definitions, please refer to the Glossary 
in Appendix A. 
 

Spatial analysis and remote sensing words 
Land cover 

Land use 

Land use system 

Classification system 

Land use legend 

Land use trajectory 

Attribute table 

 

Resolution 

Spectral 

Spatial 

Ground truth 

Minimum mapping unit 

Mixed mapping unit 

Vector GIS 

Raster GIS 

http://www.gofc-gold.uni-jena.de/redd/index.php
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Identifying land uses 
5. Although land cover and land use are related, they are not the same. Within a country, 
matching land covers (e.g. vegetation types) identified from satellite images with actual 
land uses on-the-ground is one of the greatest challenges of land use mapping (Cihlar and 
Jansen, 2001).  

6. Remote sensing experts and specialists with field knowledge of specific geographic 
areas (e.g. land managers, scientists, and government staff) are needed to identify and 
classify land uses. The opportunity cost analysis team should ensure that categories are 
compatible with monitored land cover classes and are 
consistent with carbon content and economic 
activities.  

7. To enable correct and consistent use of land use information (e.g., carbon, profits) for 
opportunity cost analysis at a national level, a hierarchal land use framework can be 
employed (Figure 4.1).  

A national land use framework for REDD+ 
8. An initial step in developing a national land use framework is to identify the current 
state of land use mapping in the country. Since many countries already have a national land 
use framework, a literature search and acquisition of existing maps is essential. If him will 
he existing frameworks are unsuitable for the opportunity cost project, the project team 
will need to improve these frameworks in line with the requirements of the project. The 
discussion below serves as a guide to decide whether to use and adapt an existing 
framework or develop a new one. 

9. The most important consideration for developing a workable national land use 
classification framework for an opportunity cost analysis is compatibility of resolutions 
between land use, economic and carbon information. A meaningful classification scheme 
must account for variation of carbon and profits across the landscape and country. Many 
factors cause variation, including: 

1. Agro-ecology climate and/or topographic zones, 
2. Soils, special consideration is needed for: 

a) wetland, peat, mangrove, volcanic soils with potentially high C 
losses,   

b) 'poor soils' of low profitability yet potential gain in C stocks, 
3. Policy, institutional and management boundaries (agriculture and forest 

zones, tenure systems, etc.), 
4. Accessibility characteristics of transport infrastructure (e.g. paved road, dirt 

road, river, etc.), 
5. Preceding uses of land, which can affect soil fertility and carbon content. 

Land cover ≠  Land use 
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 Figure 4.1. A hierarchical  land use fram
ew

ork in Cam
eroon hum

id forest zone. 39  
Source: Robiglio, 2010. 

 

                                                        
39 Caf: Cocoa Agroforest w

ith different levels of shade trees coverage. Forest classes are defined on the basis of the level of disturbances/degradation. 
Classes m

ay be associated to different types of m
anagem

ent (Com
m

unity Forest, Council Forest, Protected Areas) that provide for different intensities 
of logging.  
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10. How many land use classes? The selected number of class categories depends on: 
availability of geographic data and analysis, ability to detect differences in land cover on 
remote sensed imagery (image resolution), availability of carbon and profitability 
information of land uses, and the desired rigor of the opportunity cost analysis. Such a 
variety of factors points to a need for a multidisciplinary team with a clear understanding of 
opportunity cost analyses in the context of REDD+ programs. 

11. Splitting land uses into sub-classes is needed if a class does not accurately represent a 
land use in terms of carbon stock or net returns. Soil properties or uses may differ within the 
same land cover. Different levels of net returns within a class may arise on the basis of 
accessibility and location. Profitability for the same crop may vary, depending on whether it 
was produced near to or far from the market.   

12. On the other hand, aggregating (lumping) classes together may be needed. One reason is 
technical. The minimum mapping unit (MMU) of imagery may not be small enough to 
differentiate classes; thus a mixed mapping unit is required. Simplifying the land use 
framework is another reason. A lower number of classes requires less data management and 
analysis. In addition, a false sense of precision may arise by creating numerous sub-classes 
from inadequate resolution of images, carbon or profit information. 

13. Note that the level of detail in a land use framework needs not be the same throughout 
the country. A greater level of detail may be used in areas that are of particular interest, or to 
take advantage of better available data in some areas. Moreover, the level of detail need not 
be static. As additional information becomes available, land use categories might be split into 
sub-categories. Alternatively, previously separate categories might be joined together if the 
differences are found to be less than anticipated. In this as in many aspects of estimating the 
opportunity costs of REDD+, it is useful to think of the work as an iterative process rather 
than a one-time task. In sum, decisions about splitting or aggregating classes will be guided 
by the level of spatial detail in the mapping process and the availability of ancillary data 
about biophysical and socio-economic/infrastructural or management data.  

Table 4.1 shows a land cover and land use classification with three levels of hierarchy. This 
mixed classification system was part of an international effort to map deforestation in the 
tropics (Puig, et al., 2000; Achard, et al., 2002). The first level contains broad classes of land 
cover such as forest, agriculture and mixed covers. The second level includes land cover 
types of greater detail. The third level is even more specific, including some land types that 
are specific to certain sub-national regions. A fourth level (not depicted) only refers to forest, 
using percent canopy cover as distinguishing criteria. In this example, - differences in canopy 
cover (land cover) could be used to detect levels of selective logging (land use). Once the 
framework has been defined, the project team can focus on the logistics of remote-sensing 
analysis and the making of land cover and land use maps. During later stages of the analysis 
process, the analysts may need to revise the legend further. 
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Table 4.1. A legend from a hierarchical land cover classification system  
Level 1 Level 2 Level 3 

1 Forest     > 10% canopy Cover and > 40 % forest cover *  
Fo

re
st

 
1 Evergreen & Semi-evergreen Forest 

0 
1 
2 
3 

Unknown 
Evergreen – lowland forest 
Evergreen – mountain forest 
Semi-evergreen forest 

4 
5 
9 

Heath forest / Caatingas 
Coniferous 6. Bamboo forest 
Other  

2 Deciduous  Forest 
0 
1 
2 

Unknown 
‘Dense dry’ forest (Africa)  
Miombo’ (Africa) 

3 
4 
9 

(Dry-) Mixed deciduous (Asia)  
Dry Dipterocarp’ (Asia) 
Other 

3 Inundated Forest 
0 
1 
2 

Unknown 
Periodically inundated –Varzea  
Swamp forest (perm. Inundated) 

3 
4 
9 

Swamp forest with palms Aguaj. 
Peat swamp forest 
Other 

4 Gallery-forest 0  

5 Plantation 
0 
1 
2 

Unknown 
Teak  
Pine 

3 
9 
 

Eucalyptus  
Other 

6 Forest Regrowth 0  
 
 

7 Mangrove 0 
9 Other 0 

2 Mosaic   >10% - 40 % forest cover ( and > 10% canopy cover) 

M
os

ai
c 1 Shifting Cultivation 

0 
1 
2 

Undefined 
≤ 1/3 cropping 
> 1/3 cropping 

2 Cropland & Forest   
3 Other Vegetation & Forest 
9 Other 

3 Non-Forest Natural Vegetation  ≤ 10% forest cover or < 10% canopy cover  

N
on

-F
or

es
t 

N
at

ur
al

 
Ve

ge
ta

tio
n 1 Wood & shrubland 

0 
1 
2 
3 
4 

Unknown 
Woodland savanna – Cerrado ] 
Tree savanna  
Shrub savanna  
Bamboo (pure stands) 

5
6 
7 
9 
 

Swamp savanna 
Humid (evergreen) type (Asia) 
Dry (savanna) type (Asia) 
Other 
 

2 Grassland 

0 
1 
2 
9 

Unknown 
Dry grassland 
Swamp grassland –varzea 
Other 

3 Regrowth of vegetation  
9 Other 

4 Agriculture                           ≤ 10% forest cover or ≤ 10% canopy cover 

A
gr

i-
cu

ltu
re

 1 Arable 0 Unknown, 1 Irrigated, 2 Rain-fed 

2 Plantations 
0 
1 
2 

Unknown 
Rubber  
Oil Palm 

3 
9 

Coffee, Cacao, Coca  
Other 

3 
4 

Ranching 
Small holdings 

 

9 Other 
5 Non-vegetated  

N
on

-
ve

ge
-

ta
te

d 

1 Urban 
2 Roads 
3 Infrastructure 1  Mining, 2 Hydro-electric, 9 other 
4 Bare soil  
9 Other 

6 Water 

Water 1 River 
2 Lake 1 Natural, 2 Artificial 

7 Sea  
8  Not visible 

Not visible 1 Clouds 
2 Shadow 

9  No data  

 Source: Puig et al., 2000 
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14. A land use legend is the map key that expresses each class as a distinct color or pattern 
on the map. In this manual, classes and sub-classes in a land cover legend are matched with 
land uses. Thus, at the end of the classification process, the hierarchical land use framework 
spans from general global land cover classes to local land use classes. The land use legend is 
the basis for identifying land covers and mapping land uses.  

15. The land use legend must match a land cover legend that follows best practices for 
mapping, and meets additional criteria for compatibility with a REDD initiative (Cihlar and 
Jansen, 2001; GOFC-GOLD, 2005; Herold et al., 2006; IPCC, 2006; Herold and Johns, 2007). 
One of the best resources for developing the legend is the Land Cover Classification System40 
(LCCS; Di Gregorio, 2005). The LCCS includes a thorough description of classification 
concepts and guidelines for matching land cover types to global standards.  

Steps to identify land uses 
• Consult the literature. Cihlar and Jansen (2001) provide an overview on how to 

match land covers with land uses. Case studies from Lebanon and Kenya are 
practical examples (Jansen and Di Gregorio, 2003; Jansen and Di Gregorio, 
2004)  

• Check map availability: Reviewing previous land use change analysis is an 
important early task. Available land cover and land use maps may only need 
small modifications for use in an opportunity cost analysis. For example, 
existing land cover and land use maps may be suitable for developing a land 
use legend for lower rigor opportunity cost analyses (Tiers 1, 2). 

• Develop decision rules to convert land cover classes to land uses. Rules will most 
often be based on local expert knowledge. For example, small patches of forest 
and cleared areas (land cover) shown in remote sensing data indicate shifting 
cultivation (land use). These decision rules should be put into a table for 
reference. 

• Collect land use information during fieldwork activities. One assumption of the 
analysis is that all land cover classes can be matched to all land uses. The 
fieldwork should confirm and validate the rules matching land cover with land 
use.  

• Confirm land cover and land use data. Monitoring, reporting and verification 
(MRV) activities are an opportunity to confirm the match between land cover 
and land use.  

• Consider image resolution when developing land use legend: Different land uses 
may look the same on a satellite image (e.g. intensive or extensive agriculture 
or the degree of forest degradation). Mixed mapping units are used if the 
elements composing a mapping unit are too small to be delineated 
independently. 

                                                        
40 The LCCS manual and software can be acquired from the Global Land Cover Network website 
(http://www.glcn.org/).  

http://www.glcn.org/
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Box 4.1. Data management and analysis 
Analysis of land use change requires careful management of data. The data management 
principles of an opportunity cost analysis are similar as those for REDD activities, such as 
monitoring, reporting and verification (MRV) of carbon stock data. Developing a system for 
data management and analysis described above requires a substantial investment. Costs 
will depend on the size of the country, existing expertise and resources and other factors.  
For example, to build a national-level MRV system – something outside the normal scope of 
an opportunity cost analysis – Herold and Johns (2007) estimated a cost between several 
hundred thousand and US$2 million.  Given these high costs, a national team conducting 
opportunity cost analysis has incentives to collaborate with and build on existing work and 
expertise. If your country has an MRV system, most or all of the information needed for the 
analysis may be available. 
 
Countries that lack MRV systems will need to identify experts who have the resources to be 
able carry out the land use change analysis and develop a robust information system for 
analyzing opportunity costs. If you were to build an information system for the land use 
change assessment of an opportunity cost analysis from scratch, five elements are needed: 
human resources, data and documentation, analytical methods, hardware and software.  

1. Human resources: Expertise will be needed in remote sensing and geographic 
information systems (GIS) science and technology. Remote sensing experts should 
have prior experience producing land use and land cover maps. Experts should 
know how to pre-process data for subsequent classification and analysis, including 
knowledge of coordinate systems and data registration. Specialists should ideally 
have experience with visual interpretation of imagery, digital image processing, 
supervised and unsupervised classification and image segmentation. Experts should 
know how to conduct field work with global positioning systems and digital 
photography. Personnel typically have a Masters degree or equivalent experience in 
fields that use remote sensing and GIS methods. 

2. Data and documentation: An inventory of data needed should be made to 
determine the feasibility of acquiring imagery, and whether additional expenditures 
will be needed. If a national MRV activity is not yet established or no remote sensing 
data or classified land cover information is available, the costs (time and money) of 
acquiring data and their analysis must be considered. Documenting data, methods 
and results of any opportunity cost analysis is a high priority. Context and 
description of data (or metadata) are needed, especially since the analysis requires 
the participation and contribution of many types of scientific expertise and 
participants may change over time. Documentation enables analysis to be 
repeatable and meet peer-review quality standards. The IPCC (2006) or other 
international standards can serve as guidelines. For remote sensing and spatial data, 
a national effort should produce metadata that meets the standards of the 
International Standards Organization (ISO) or the U.S. Federal Geographic Data 
Committee (FGDC). An opportunity cost analysis, or REDD effort should align itself 
with any national efforts to develop national spatial data infrastructure (NSDI). 

http://www.isotc211.org/
http://www.fgdc.gov/
http://www.fgdc.gov/
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More information on geospatial metadata can be found through the Global Spatial 
Data Infrastructure (GSDI). 

3. Analytical methods: The complexity and targeted level of analysis will determine 
the analytical methods employed. Any country can draw on an extensive GIS and 
remote sensing literature. 

4. Hardware: Required capacity of the computer hardware will also depend on the 
rigor of the analysis. Personal computers with large hard drives and ample memory 
(i.e. RAM) are typically sufficient. 

5. Software options for land use analysis may be freely-available open source or 
proprietary, including: Google Earth, GRASS (http://grass.itc.it/), SPRING (Camara, 
et al. 1996), ILWIS (http://www.ilwis.org/), low-cost IDRISI (Eastman, 2009), 
ArcGIS from Environmental Systems Research Institute (ESRI) and other software 
packages. The capacity of the software to identify appropriate characteristics must 
be considered. For example, do the image interpretation algorithms work well in 
tropical contexts?  

 

Creating land use maps  
16. This section is a general overview of available remote sensing (RS) techniques and 
associated challenges of developing land use maps for opportunity cost analysis. An 
extensive handling of the tools for estimating, accounting and reporting on land cover and 
carbon stocks is found in the IPCC Good Practice Guidance  and the GOFC-GOLD REDD 
Sourcebook (IPCC, 2006; GOFC-GOLD, 2009).  

Remote sensing data 
17. Remotely sensed information comes from different sources, each with unique 
resolution, frequency (i.e., orbit cycle) and cost (Table 4.2). Two websites are useful for 
acquiring remote sensing data:  the United States Geological Survey's GLOVIS site 
(http://glovis.usgs.gov/) and the Global Land Cover Facility at the University of Maryland 
(http://glcf.umiacs.umd.edu/index.shtml). Remote sensing specialists are advised to consult 
the GOFC-GOLD Handbook (2009) for a complete discussion of the considerations related to 
selecting remote sensing imagery.  

  

http://www.gsdi.org/
http://www.gsdi.org/
http://grass.itc.it/
http://www.ilwis.org/
http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html
http://www.gofc-gold.uni-jena.de/redd/
http://www.gofc-gold.uni-jena.de/redd/
http://glovis.usgs.gov/
http://glcf.umiacs.umd.edu/index.shtml
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Table 4.2. Characteristics of satellite images  

Satellite Sensor Resolution (Spatial) 
Orbit 
cycle 

Image 
cost 

TERRA MODIS 
250 m 

2 days Low 500 m 
1000m 

LANDSAT 7 ETM+ 
15 m   (185 km) 

16 days Medium 
30 m   (185 km) 

DMC II  32 m (80x80 km) 1 day Medium 

SPOT 1-3 
XS 20 m   (60x60 km) 

26 days Medium 
PAN 10 m   (60x60 km) 

SPOT 4 
XS 20 m   (60x60 km) 

26 days Medium PAN 10 m   (60x60 km) 
VGT 1    (2000 km) 

SPOT 5 
HRS 10 m  (60x60 km ) 

26 days Medium 
HRG 5 m    (60x60 km) 

TERRA ASTER 
15 m 

 Medium 
30 m 

IRS-C 
Pan 5.8 m  (70 km) 

24 days Medium 
LISS-III 23 m   (142 km) 

IKONOS 
PAN 1 m     (min10 x 10 km) 

3 days High 
MS 4 m     (min10 x 10 km) 

QUICKBIRD  
2.5 m  (22x22 km) 

3 days High 
61 cm (22x22 km) 

ALOS 
PRISM 

AVNIR2 
PALSAR 

2.5 m (70 km) 
10 m (70 km) 
10 m (70km) 

46 days 
 

High 
 

Source: Adapted from GOFC-GOLD, 2010. 

 

18. One satellite data option is high resolution imagery such as IKONOS and Quickbird. Such 
remote sensing data, however, becomes more expensive with smaller minimum mapping 
units (MMU) and require substantial computing power to be able to manage large quantities 
of small pixels. Moreover, geographic coverage of high resolution imagery is limited, 
especially in many areas of the tropics. 

19. In contrast, low resolution imagery (large MMUs) are widely available at low cost. For 
example, MODIS images have 250m spatial resolution and can be freely downloaded from 
the Internet. The poor resolution, however, makes it difficult to distinguish land classes. This 
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problem is compounded in the humid tropics where landscapes often contain small 
agricultural plots (Figure 4.2).  

 

 
Figure 4.2. A spatially heterogeneous farm landscape in Cameroon. 
Source: Robiglio, 2009. 

 

20. Medium resolution imagery such as Landsat and Aster represent an attractive 
compromise of resolution and cost (Figure 4.3). An important advantage of Landsat is the 
availability of older images to establish a baseline for determining medium-term 
deforestation rates.  However, Landsat 7 has a sensor error that seriously limits image use 
since 2003. Therefore, the analyst should consider alternative sensors to overcome gaps in 
recent images.    
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Figure 4.3 Remote sensing data: cost and complexity versus resolution (MMU) 
Source: Authors 

 
21. The remote sensing data options described above are standard alternatives. 
Nevertheless, land use and carbon stock assessments may be able to take advantage of new 
methods and approaches to monitoring and measuring deforestation, forest degradation and 
land use change (see discussion on LIDAR in Box 4.4 below). As they become available and 
accepted, analysts can consider these new approaches.  

 
Box 4.2. Estimating carbon stocks from biomass maps versus land use maps 
Remote sensed imagery can be useful to estimate carbon in biomass and understand the 
geographic distribution of carbon across a landscape (Baccini, 2004; Foody, et al. 2003, Goetz 
et al. 2009). For example, Saatchi et al. (2007) estimated total carbon of 86 Pg C from their 
remote sensing assessment of aboveground live biomass in the Amazon. Biomass levels 
varied with the length of the dry season and across the landscape.  

Biomass assessments have less relevance for calculating the opportunity cost of avoided 
deforestation. Opportunity cost calculations require information on land uses with 
associated C content (see Chapter 5) and profitability measures. Only from land use, can the 
net present values of economic activities be estimated.   

Image analysis  
22. Remote-sensing requires preprocessing of the satellite imagery. Such work often 
includes image geo-referencing and radiometric correction to account for atmospheric 
distortions. Nevertheless, many remote-sensing providers deliver satellite imagery that has 
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already been pre-processed. Standard methods to conduct the preprocessing are available in 
the remote sensing literature (for example, see Jensen, 1995; Lillesand and Kiefer, 2000). 

23. In general, three methods are available to interpret remote-sensing imagery: (1) visual 
interpretation, (2) pixel-based digital image processing, and (3) image segmentation. To 
date, there is no consensus in the REDD literature on the best method. Selection of the 
interpretation method may depend on national human resource capacities, on the relative 
costs of the different methods, and on the characteristics and size of the area.  

1. Visual interpretation. Analysts draw polygons around visible differences in the 
satellite images on the computer screen (Puig et al., 2002). The polygons are associated 
with a class from the land cover legend. An advantage of this method is that recent 
imagery can be updated using the base map from an initial date. A disadvantage is that 
the method is more subjective than other methods, depending on analyst judgment. In 
addition, for large countries, visual interpretation may be impractical and time-
consuming.   

2. Pixel-level digital image processing. Computer algorithms are used to conduct 
unsupervised and supervised classifications. Most digital image processing in the past 
has been conducted at the pixel level (Jensen, 1995). Each pixel is considered a land unit 
and is clustered into groups of similar pixels. The clustering may be based only on the 
digital number of the pixel, a method referred to as unsupervised classification. With 
supervised classification, however, an analyst assigns pixels representing a land cover 
to a class in the legend. This second method depends on the analyst knowledge of the 
study area. Digital image processing is more objective compared to visual 
interpretation, as it depends on computer algorithms to assign pixels to land classes.  

3.  Image segmentation. Recent remote-sensing software includes image segmentation 
methods to classify land cover and land use (Camara, 1996; Eastman, 2009). An 
algorithm clusters groups of pixels together based on their spectral responses and a set 
of rules established by the analyst. An advantage of this approach is relatively low cost 
over large areas. Nevertheless, careful linking of land cover with land use ground truth 
information is needed to avoid large scale errors. 

24. After an image interpretation method is selected, an analysis can be conducted and 
digital maps produced. The next step will be validation of the results. Analysts will need to 
review and improve image interpretation processes and results, depending on the outcome 
of the verification and validation analysis. In general for tropical land uses, a high level of 
expert judgment and ground knowledge are needed. 
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Box 4.3. The challenge of identifying forest degradation  
Forest degradation is a reduction of tree density, measured by canopy cover or stocking, 
within the forest (Schoene, et al., 2007). Forests are degraded by human or natural causes. 
The magnitude/intensity of degradation monitored depends on the definition of forest. For 
example, if a country identifies forest with a minimum surface of 0.5 ha then a loss of forest 
smaller than 0.5 would be reported as degradation. Losses of areas higher than 0.5 ha would 
be considered deforestation. A similar logic can be applied to other forest definition 
thresholds for canopy cover and height. For a discussion of the importance of definitions, see 
Sasaki and Putz (2009), van Noordwijk and Minang (2009) and Guariguata et al. (2009).  

Degradation can be difficult to identify on satellite images. Forest inventory plots can 
produce accurate biomass and carbon estimates yet results are site specific (see Harris, et al. 
2010) In the land use legend presented earlier in this chapter, forest degradation is 
accounted for by identifying the different levels of canopy cover.  Associated spatial data may 
be used to identify areas where degradation may be occurring (e.g. in logging concessions). 
Forest density and tree coverage can be estimated using expert judgment, LIDAR (Light 
Detection and Ranging) or multispectral 3-dimensional aerial digital imaging. 

Identification of forest degradation is a hot topic in remote-sensing research. Asner (2009) 
has developed a method to combine traditional satellite mapping approaches with an active 
airborne, laser technology approach called. LIDAR produces information on the height of 
trees, crown diameter and the structure of the forest, making it especially useful for 
determining whether a forest has been selectively logged over. More recently, LIDAR 
combined with MODIS imagery was used to map tree canopy height over the entire world 
(Lefsky, 2010). 

M3DADI uses (1) GPS-based techniques to identify tree crown mosaics, and (2) off-the-shelf 
camera equipment mounted on Cessna aircraft to generate accurate raster-based 
photomaps. From the aerial videography, a 3D reconstruction is developed that identifies 
terrain features and vegetation types and measures the height and mass of individual trees. 
The measurements are then calibrated with the carbon inventory data and regression 
equations to estimate carbon remotely (Stanley, et al. 2006).  

The time costs for the field sampling approach were about 2.5 to 3.5 times longer than for the 
M3DADI approach to achieve the same precision level. Although M3DADI has high fixed 
costs, the costs for additional plots are low (Brown and Pearson, 2006). Another advantage 
of remote-sensing approaches is that the data provide a permanent record of what was found 
in a given location at any given time. The images can be re-visited and verified, or new 
assessment techniques applied to historical data to improve historical estimates (Stanley, et 
al. 2006).These new method and others promise to improve our capacity to cost-effectively 
identify forest degradation. 

 

Checking accuracy 
25. Are the land use estimates accurate? Validation of land cover and land use classification 
is a standard practice that opportunity cost analysis must include. Accuracy assessment and 

http://www.nasa.gov/topics/earth/features/forest-height-map.html
http://www.nasa.gov/topics/earth/features/forest-height-map.html
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validation of land uses are important to assure the credibility of land use change estimates. 
This section discusses (1) sources of error and uncertainty, and (2) the validation process.  

Sources of error and uncertainty  
26. An analysis should identify the sources of error and their magnitude. With this 
information, the analysis team can revise the work in an effort to reduce these problems.  

27. Using multiple images – across the study area or for different dates – requires a 
separate classification process for each individual scene. These differences in the images and 
in the processing may lead to inconsistencies in quality of the classification for the study 
area. For example, a challenge could arise related to the timing of imagery. Interpretations 
may reflect errors due to varying vegetation vigor if different nearby image scenes were 
captured at different times of the year. If one scene was captured in the dry season and 
another in the wet season, the classification may reflect seasonal differences in vegetation, 
and not the longer-term land cover and land use. 

28. Another typical challenge to land use mapping in the tropics is cloud cover. The analyst 
will need to acquire additional images for areas covered by clouds. Otherwise, areas with 
cloud cover must be left out of the analysis. Future technological development for the use of 
Radar and LIDAR images could help overcome cloud problems.  

29. Cloud cover is a persistent problem, in particular in the coastal countries of Central 
Africa. The improved accessibility to SPOT images (Mercier, 2010) and the establishment of 
an Earth Observation Receiving Station for the Central African region in Gabon (Fotsing, et al. 
2010) are expected to facilitate RS mapping and consistent monitoring of forest cover change 
in the area. 

30. Acquiring imagery with appropriate spatial resolution is also a potential challenge. 
Difficulties arise when interpreting smallholder agriculture and degraded forests. A key task 
is to ensure that the resolution of the remote sensing imagery can capture land cover and 
related land uses that are relevant for the analysis. Expert use of the definition and 
composition of mixed mapping units for land use mosaics can help overcome problems of 
inappropriate spatial resolution.   

Validation process  
31. Validation methods can be found in textbooks and the remote sensing literature and 
should be consulted in depth (Jensen, 1995; Lillesand and Keifer, 2000; Congalton, 1991; 
Foody, 2001; Congalton and Green, 2009). This section briefly describes the general process 
to conduct a validation exercise for land cover and land use maps.  

32. Validation requires information on the “true condition” of land use throughout the study 
area. Information can come from two sources: 1) ground truthing, or 2) reference data.  
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1. Ground-truthing is a remote sensing term for field verification. To acquire such 
information, a field survey is conducted to collect ground characteristics at sample 
points using a comprehensive sampling scheme. One way to develop sample points is 
by using random point generators within a GIS to assign locations to be verified. The 
points should cover as much as possible the variation in the RS imagery. Nevertheless, 
no well-established rule exists on how many data points are needed for the validation. 
One rule of thumb, however, is that 30 to 50 points are needed for each land cover / 
land use class.  

The key technologies and tools needed for the field validation are spreadsheets, 
databases, global positioning systems (GPS), and digital cameras. An available field 
verification protocol document includes a sample survey form for recording 
information.41 The field team records the data in a standardized form. With ground 
truthing, the ability of survey team to access all parts of a study area may be limited. 
Many areas lack roads or present difficult terrain, making a representative sample of 
land uses and covers difficult to acquire. Therefore, sampling schemes need to be 
somewhat opportunistic, taking most points in places where access is low-cost and 
practical.  (See Box 4.5 for other cost-savings approaches.) 

2.   Reference data are imagery or maps with a high degree of validity. The most common 
reference data are very high resolution imagery (VHRI), which may have spatial 
resolutions of 1 m, a level of detail that enables validation against land cover and land 
use classification. Common sources of VHRI include Quickbird and IKONOS. For some 
areas, virtual globes such as Google Earth and Microsoft Virtual Earth often include 
VHRI, displayed in their optical bands. Limitations to their use include an inability of 
the optical range to discern differences in some land uses, and a suitability of image 
date for comparisons.   

Box 4.4. Optimizing activities in the field  
Fieldwork in the study area can accomplish multiple objectives at the same time.  For 
example, while researchers are taking plot level measurements of biomass, digital 
photographs and global positioning system (GPS) points can be collected with notes on the 
land conditions.  

Before image interpretation, field work is needed to identify homogenous land units for 
classification. During field work, the analysis team can collect on-the-ground information 
that can be used for training and validation. To avoid any confusion, two different data sets 
have to be created – one with training points and the other with points for validation.  

Ground-truth information should be managed in a data management system. For example, 
the figure below shows a Google Earth interface to photographs, GPS points and field notes 

                                                        
41 The CIFOR-ICRAF-Biodiversity Platform has produced a document titled "Ground-truthing Protocol," 
available from http://gisweb.ciat.cgiar.org/GoogleDocs/FPP_Mapper/groundtruth_protocol.pdf.  

http://gisweb.ciat.cgiar.org/GoogleDocs/FPP_Mapper/groundtruth_protocol.pdf
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stored in an online spreadsheet.  The study area was visited in a ground truthing campaign in 
the central Peruvian Amazon. To match photographs with locations, timestamps of the digital 
photos were matched with timestamps of the GPS point.    
 

  
Example photograph of a ground-truth point within a landscape 

 

33. After the “true” land cover or land use has been determined for sample points, 
comparison with the classified map can begin. The recorded validation data is digitized into a 
map with its accompanying attribute table. Then the validation sample map is overlaid on 
top of the land use map. This point-in-polygon overlay produces a table where one column 
shows the land use validation information from the field survey or the VHRI. Another column 
shows the land use from the classification. These two columns of data are then used to create 
an error matrix (Table 4.3). This example compares a classified map to VHRI in Google Earth. 
The value in each cell is the number of validation points for each combination of land use 
designated according to the classified map and to the VHRI.  
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Table 4.3. An error matrix 
Land Cover 

Classes 1 2 3 4 5 6 7 8 9 Google Users 

1 40     3    43 93.0 
2  31    2    33 93.9 
3   29  1 3    33 87.9 
4    28  4 1  1 34 82.4 
5     24 2    26 92.3 
6 1 4 1 4 1 36 3 3 3 56 64.3 
7    3   30   41 73.2 
8 1      4 26  31 83.9 
9   1 2   3  21 27 77.8 

Landsat 42 35 31 37 26 50 41 37 25 324  
Producers 95.2 88.6 93.5 75.7 92.3 72.0 73.2 70.3 84.0   

LCC Notes:  1-Forest, 95% canopy; 2-Forest, 80% canopy; 3-Forest, 65% canopy; 4-Forest, 50% canopy;  5-oil 
palm; 6-shifting cultivation; 7-short rotation fallow; 8-large cattle ranches; 9- without vegetation.    

Source: White and Hyman, 2009. 
 
34. The error matrix shows the overall number of correctly-classified points, as well as 
those that were misclassified. Using the results of the point-in-polygon overlay, the analyst 
fills the error matrix table. The vertical axis of the table represents the map classification 
based on Landsat images and the horizontal axis represents the VHRI imagery. The “Users” 
accuracy (far right column in the table) is the number of correctly assigned pixels divided by 
the total number of assigned pixels in that class, indicating errors of commission when pixels 
are committed to an incorrect class. The “Producers” accuracy (last row of the table) is the 
number of correct pixels for a class divided by the actual number of reference pixels for that 
class, indicating errors of omission when pixels are omitted from their correct class.    

35. For example, the upper left-hand cell shows that 40 points were interpreted (from 
classified map) and verified (from a VHRI in Google earth) as 95% forest canopy. All 40 
points were correctly classified, and therefore appear in diagonal set of numbers (shaded 
cells). Misclassified points are outside the diagonal set of numbers. For example, row 1 
column 6 indicates that three points of the map were classified as 95% forest canopy, but 
according to VHRI were areas of shifting cultivation.  

36. The advantage of the error matrix is that it allows the analysts to assess which land use 
and land cover change combinations have the highest errors.  The results of the error matrix 
are used to review and improve the map. Analysts may conduct several sequences of map 
improvement and subsequent error assessment, until an acceptable level of an error is 
attained. 
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37. Error analysis and validation can be a difficult task. The above description is intended to 
give an overview of the process of map validation. Documentation of the validation effort 
must be complete in order for independent experts to assess the quality of the maps.  

Estimating land use change 
38. This section describes how to calculate land use change. The procedure contains four 
basic steps.  

1. Prepare: Ensure that the maps for each individual date use the same classification 
system and the images are consistent in terms of area covered, season and sensor 
(spatial and spectral resolution).   

2. Overlay: Use GIS or image processing software to overlay land use maps from two 
different dates. The overlay process creates a new table – called an attribute table 
– where each polygon or pixel in the map contains the recorded land use on both 
the first and second dates.  

3. Simplify: The attribute table should be reduced to the set of unique combinations 
of land use change.42 Each individual polygon contains the land use code for the 
dates in the land use change analysis. The different land use change combinations 
are listed for each polygon. In order to reduce the attribute table to unique 
combinations of land use change, each distinct land use transition must be 
identified with its areas summed.43  

4. Create the land use change matrix: Information within the attribute table of land 
use change is an input to develop a land cover change matrix. The area values are 
summarized for each combination of land use change.  
 

39. More information on methods and procedures can often be found in textbooks on 
natural resources assessments or software manuals (e.g. Lowell and Jaton, 2000; Eastman, 
2009). In addition, some image processing and GIS software programs include tools to 
conduct LU change analysis, such as the low-cost and popular IDRISI (Eastman, 2009).  

40. Table 4.4 is an example of a country level land cover change matrix. The vertical column 
indicates the year of the initial land cover image (2003). The duration of the period of change 
extends to 2006, as shown on the horizontal row. The diagonal of the table indicates 
unchanged land area units between 2003 and 2006 (in blue font).  

41. Notice how these numbers are usually larger than most other numbers in the table. In 
most study areas, especially if the period of change is relatively short, the overall area of 
change is likely to be small. The figure in the first row and the second column indicates that 

                                                        
42 Using a raster GIS, the system automatically reduces the attribute table to unique combinations. Vector 
systems will need some kind of dissolve operation 
43 This procedure is often called DISSOLVE in database and GIS software packages. In the Peru analysis, 60 
unique combinations of land use change were identified. 

http://www.clarklabs.org/products/index.cfm
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1.22 million ha changed from forest land in 2003 to cropland in 2006. Each cell in the land 
cover change matrix is read the same way. The total value at the end of the first row is the 
area in Forest in 2003 (93.60). The total value at the bottom of the first column is the total 
area in Forest in 2006 (98.46). Therefore the study area lost almost 5 million ha of forest 
between the two dates.  

 
Table 4.4. A hypothetical land use change matrix.   

Change to  
Land cover 2006 
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 FL CL GL WL SL OL ND Total  
FL 89.11 1.22 1.64 0.47 0.02 0.45 0.69 93.6 
CL 0.87 45.28 1.09 0.30 0.35 0.39 0.18 48.45 
GL 1.79 1.27 14.73 0.49 0.03 0.21 0.15 18.66 
WL 1.22 0.65 0.58 7.78 0.03 0.30 0.01 10.57 
SL 0.03 0.17 0.04 0.01 2.61 0.02 0.01 2.91 
OL 0.20 0.28 0.32 0.11 0.02 2.09 0.01 3.02 
ND 5.25 1.50 1.03 0.20 0.04 0.17 2.51 10.7 

 Total 98.46 50.37 19.42 9.36 3.09 3.63 3.57 187.91 
Land covers: FL= forest land, GL= grassland, WL= wetland, SL= settlement, OL= other land, ND= no data. 
Source: Authors 

 
42. The land use change matrix is a key input for the opportunity cost analysis spreadsheet. 
The matrix is copied directly into the spreadsheet where land use change information can be 
used with economic data to calculate opportunity costs.  

43. The measurement of land use change, as described above, provides important data for 
opportunity cost analysis and for REDD+. In addition to providing data needed for the 
opportunity cost analysis, the land use change matrix can be used to assess the driving forces 
of deforestation and land use trajectories over time. The final section of this chapter below 
describes how to use land use change data in an effort to explain land use change. 
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Box 4.5. Land use maps for Jambi Province, Indonesia 
Below is an example of land use maps derived from remote sensing in Indonesia (van 
Noordwijk et al., 2007). The study area has been zoned according to accessibility and the 
presence of peat soils, factors important in assessing the opportunity cost of avoided 
deforestation.  

 
Land use maps for 1990 and 2005 in Jambi province, Indonesia  
Source: van Noordwijk et al., 2007. 
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Explaining land use change 
44. Land uses can change rapidly or slowly, sometimes for obvious reasons and sometimes 
because of hidden forces. Within a REDD+ context, understanding and explaining land use 
change is essential to both identifying appropriate emission level reductions and effective 
policies to maintain and increase carbon stocks.  

45. Here we discuss three related topics, the forest transitions, drivers of deforestation and 
land use trajectories. Inquiry into forest transitions helps to identify the conditions of 
national forests: ranging from natural/pristine to logged and degraded. Forest condition has 
implications on carbon content, future profits and opportunity cost estimates. Analysis of the 
drivers of deforestation attempts to answer the question of why deforestation occurs. The 
topic of land use trajectories is based on analysis of past land use change. Understanding of 
forest condition, drivers of change and types of change are essential to identifying plausible 
future land use trajectories, from which REDD+ opportunity costs are estimated. 

Forest transitions 
46. The world’s forests have experienced different levels of use. Given the condition of 
forests, specific components of REDD+ policy (with respect to deforestation, degradation, 
afforestation/reforestation) can be more relevant in some countries than others. To compare 
the status forests can be a transition curve can be used (Figure 4.4) that reflects the 
dynamics of agriculture, forests and other land uses over time (Angelsen, 2007). 
Consequently, the location of a country (or sub-national region) on the forest transition 
curve can affect the priorities for participating in REDD+ programs and associated 
opportunity costs. The forest transition framework uses four basic categories: 

1) Countries with low deforestation and high forest cover such as the Congo 
Basin and Guyana. In these countries, forests are relatively undisturbed, 
however deforestation and degradation may increase in the future. 
Degradation is important since these countries are less likely to benefit from 
‘avoiding deforestation’.  

2) Countries with high deforestation such as (areas of) Brazil, Indonesia and 
Ghana. These countries have strong incentives to engage in deforestation 
accounting. Nevertheless, they are less likely to have a significant interest in 
accounting for degradation unless little additional accounting effort is 
required.44  
 

 
 
 
 

                                                        
44 The exclusion of forest degradation from national REDD+ programs, especially where selective logging is 
common, could lead to considerable leakage. 
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Figure 4.4. Categories of forest transition 
Sources: Adapted from Angelsen (2007) and Murdiyarso (2008). 
 
 

3) Countries with low deforestation and stable forest cover are characterized 
by forest mosaics and stabilized forests. Either because the forest has already 
been largely cleared or because of effective forest protection policies, 
deforestation rates have leveled off. India and parts of Central America may 
pertain to this category. These countries may be interested in reducing 
degradation, probably in combination with forest conservation, afforestation 
and reforestation, and other schemes aimed at enhancing forest carbon stocks.  

4) Countries with increasing forest cover such as China and Vietnam. These 
countries have interest in degradation accounting and enhancing their carbon 
stocks. Although national forest area may be increasing through plantations, 
existing forests may be simultaneously experiencing degradation, which could 
be reverted through protection or enrichment plantings.  
 

Driving forces of deforestation 
47. Knowledge of the broader factors driving deforestation helps analysts understand the 
potentially complex causes of land use change, estimate both business-as-usual and 
reference emission levels, and identify appropriate policies required for achieving REDD+.   

48. Causes of deforestation can be either observable or hidden (Meyer and Turner, 1992; 
Ojima, et al., 1994). A global meta-analysis of 152 sub-national case studies categorized 
deforestation across the tropics into three categories of observable causes: (1) agricultural 
expansion, (2) wood extraction, and (3) infrastructure extension (Geist and Lambin, 2001, 
Table 4.5). These causes are in turn influenced by underlying driving forces that are more 
difficult to assess. Such hidden driving forces typically act in conjunction with each other – at 
different temporal and spatial scales. 
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Table 4.5. A categorization of observable and hidden causes of deforestation 
Observable causes 
Agricultural 
expansion 

Staple food expansion (smallholder) 
Commercial agriculture (large-scale and smallholder) 

Wood extraction 
Timber extraction Private company logging 

Undeclared logging 

Fuelwood/charcoal Domestic uses rural & urban 
Industrial uses 

Infrastructure 
extension 

Roads (public, logging) 

Private enterprise 
infrastructure 

Hydropower 
Mining 
Human settlements 

Hidden causes 

Economic Market growth 

Demand growth in urban centers 
Increased accessibility to urban markets 
Changes in consumer diets (e.g. meat) 
Poverty 
Price shocks 
Missing or underperforming credit and 
input markets 

Policy and 
institutional 
factors 

Formal policies 

Export taxation, price interventions (e.g., 
subsidies) 
Industrial policy 
Agricultural research and extension 
Migration policy 
Land reforms 

Open access to forest lands (Cote d’Ivoire, Ghana, Cameroon) 

Agricultural 
technology 

Labor saving innovations 
Little or no generation of land saving innovations 
Technological stagnation leading to extensification 

Demographic 
Population growth 
Migration 
Spatial population distribution 

Social triggers 
Health & economic crisis conditions (e.g., epidemics, economic 
collapse) 
Government policy failures (e.g., abrupt shifts in macro-policies) 

Source: Geist and Lambin, 2001. 

 
 

49. In Peru, for example, the national REDD+ team first reviewed the global literature on the 
drivers of deforestation (Velarde, et al., 2010). Next, existing national deforestation studies 
were reviewed. Based on these resources, an analysis framework was created with the direct 
and indirect drivers of deforestation in the Peruvian Amazon (Figure 4.5). While this 
information is not directly needed for opportunity cost calculations, the analysis enabled the 
national team to develop future scenarios of land use and estimate reference emission levels 
(RELs). This information can help to prioritize specific land uses for opportunity cost 
analysis. 
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Identifying land use trajectories 
50. The term land use change can have different meanings, especially within a REDD+ 
context. Land use can imply a change from forest to agriculture, from one agricultural crop 
to another, or a series of land use changes. Therefore, clarification of what is meant by land 
use change is essential to REDD+ policy discussions and the estimation of opportunity 
costs.  

51. Land use change is rarely a quick, one-time independent event, such as: natural forest 
to agricultural production. Especially in forest frontiers, lands typically undergo a series of 
inter-related changes over many years. An often-observed sequence begins when loggers 
enter a forest to selectively cut the highest value timber trees. Later, logging companies 
selectively cut other lower-value species. Next, pioneer settlers convert the remaining 
forest with slash-and-burn techniques into agricultural land parcels. After a few years of 
production, the parcel is left fallow for several years. Such swidden agricultural (crop-
fallow) practices may continue, or the parcels may be converted to pastures for cattle or to 
intensive agriculture.  

52. Analysis of land use histories within forest frontiers provides important indications of 
how land use would likely change without a REDD+ program. These future land use change 
scenarios are termed land use trajectories. Each of the land uses that comprise the changes 
have distinct carbon stocks and profit levels, and thus have an effect on REDD+ opportunity 
cost estimates. 

53. The approach presented here integrates the whole sequence of changes, which takes 
into account land uses during and after forest conversion (e.g., from the initial forest to the 
end stage). This comprehensive approach of land use change enables countries to 
understand the current situation and estimate likely land uses in the future.  

54. Identification of land use change is best achieved through collaborative discussions 
amongst local and external specialists. This dialogue can be advanced while identifying 
predominant land uses and the level of precision for the opportunity cost analysis (Tiers 
1,2,3).  

55. To guide a land use analysis of national level, five general types of land use change are 
identified. These changes are based on product (forest versus agricultural/ranching) and 
frequency of change within the analysis horizon: cyclical, direct or one-time and 
transitional. The five types are forest harvests, forest conversions, agricultural cycles, 
agricultural transitions and direct changes, and are depicted in Figure 4.6. Context of the 
analysis is provided by the forest and non-forest land  uses before the analysis horizon.                                                                                                                                                                   
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Figure 4.6. Land use change trajectories: types and examples  
Source: Authors. 
 

Forest harvests 
56. Some human activities within forests can generate profits with little or no effect upon 
trees. Harvesting activities, such as hunting and some non-timber forest product collection 
(NTFP), can occur consistently throughout a time horizon and not affect a forest’s carbon 
density levels. Other activities, such as logging or intensive fuelwood collection can 
significantly impact carbon. These activities change the forest from its natural state.  

57. Even relatively invasive timber harvesting practices which have a great impacts upon 
a forest may not cause it to lose its land use categorization of forest. Recall that the broad 
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IPCC definition of forest enables somewhat substantial changes to occur (i.e. a reduction 
tree coverage or degradation).  

58. Each of these forest harvest activities generates different products and profit, with 
different carbon impacts upon forests. Therefore, carbon and profitability estimates from 
forest land uses should consider a potentially broad array of different forest management 
and harvest practices, some of which occur a few times in a given period (e.g., timber 
harvests) and others that occur more frequently, perhaps annually (e.g., NTFP collection).  

Forest conversion 
59. Conversion from forest to other uses is a well-known type of land use change. This 
one-time change, however, can produce distinct financial results depending on the context. 
Trees can be a financial burden or a benefit during the conversion process. If sold for 
timber or charcoal, trees can generate substantial profits. In contrast, if tree products 
cannot be sold, then the cost of their removal can reduce profits.  

60. Forests are not all the same. Many forests, especially in established frontier areas, 
have been partially harvested, with high-value timber already having been logged. REDD+ 
opportunity cost analysis requires recognizing the often-spatially determined factors of 
tree use (and profits). This wide range of potential financial impacts can greatly affect 
estimates of REDD+ opportunity costs. More on this topic in Chapter 6. 

 

The next three land use changes primarily refer to agricultural and ranching activities. 

Cyclical change 
61. Cyclical land use change is a repetitive series of land uses, often called a land use 
system. An example of a cyclical change is an agricultural crop and fallow rotation. This 
cycle of land use typically repeats itself throughout a time horizon. Although specific crops 
within the cycles may differ, general patterns can be discerned that can simplify a 
profitability analysis.  

Transitional change 
62. Land use transitions are changes that do not repeat over time. A common transition is 
slash-and-burn agriculture to perennial land uses, such as tree crop or cattle systems. The 
new enterprise activity typically replaces the fallow phase, rather than continuing a crop-
fallow cycle. Substantial investments of capital and labor are often needed before the new 
land uses generate positive earnings.  

Direct change 
63. In some forest margin areas, lands are directly converted from forest to agricultural or 
tree production. Often led by large multinational firms, soy, agroforestry systems or oil 
palm plantations are examples of direct changes. 
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The following land use changes refer to the “+” in REDD+. 

Reforestation 
64. Reforestation refers to the replanting of a cleared or partially cleared forest (i.e. 
degraded forest). Numerous types of livelihood activities can occur with established 
forests.  

Afforestation 
65. Growing new forests is termed afforestation. Such an activity typically occurs where 
forests did not exist or were present many years ago.  

 

Predicting land use change 
66. Future projections of land use change are an important component in estimating 
baseline and reference emission levels. Figure 4.7 shows how analysis of historical trends 
link with future projections. 

 
Figure 4.7. Land use change: links between historical and future analyses 
Source: FCPF, 2010. 
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67. Analyses of future land use change range from simple to sophisticated. Simple 
approaches include extrapolating past land use change into the future. Adjustments can be 
made to account for both bio-physical (e.g., soil fertility, road access, etc.) and socio-
economic factors (e.g., population growth, government development policy, food prices, etc. 
Sophisticated approaches include spatial probabilistic analyses with different explanatory 
variables and feedback effects. See Agarwal, et al. (2002) for an extensive review of land 
use change models. Despite the wide range of complex analytical methods, scenario 
analyses are important to compare the effect of different data, contextual and method 
assumptions. 
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Chapter 5. Carbon measurement of land uses  
 

Objectives 
1. Explain basic concepts of terrestrial carbon cycle and global carbon 

accounting systems, 

2. Guide carbon analysis within a national accounting framework, 

3. Introduce carbon measurement protocols and reference materials, using a 
bottom-up approach for carbon measurements from plot to land use, to 
landscape/sub-national level, and to national scale, 

4. Identify data sources, gaps and measurement priorities, 

5. Estimate ”typical carbon stock values” (time-averages) of land uses for use in 
an opportunity cost analysis. 

6. Assess costs for capacity building based on available national capacities.  
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1. Numerous terms are used in the measurement of carbon. For definitions, please refer 
to the Glossary in Appendix A. 

Forester and carbon specialist words 
Allometric equation 
Biomass 
Carbon dioxide flux 

Diameter at Breast Height 
(DBH) 
Humification 
 

Litterfall 
Landscape 
Necromass

 

Know your carbon 
2. How much carbon would be emitted if a given hectare of forest were converted to 
another use? The answer to this question is a critical part of analyzing REDD+ opportunity 
costs. In this chapter, we first present basic concepts of terrestrial carbon (C) cycle and 
global carbon accounting systems. Next, we show how to estimate typical carbon stock 
values at sub-national and national levels. Important carbon measurement protocols and 
reference materials are presented along with how to identify data sources and carbon 
measurement priorities. Cost estimates for applying these methods are also provided.  

Terrestrial carbon cycle 
3. Carbon dioxide (CO2) is exchanged between terrestrial vegetation and the 
atmosphere. Net balances change between sequestration (also known as storage or fixing) 
and release according to time period: (a) minute-to-minute (e.g., with cloud interception of 
sunlight), (b) day-night pattern, across a 
seasonal cycle of dominance of growth and 
decomposition, and (c) the lifecycle stages of 
a vegetation or land use system. Within this 
manual, we focus on the latter time scale, as 
part of annual (or 5-yearly) accounting of land use and land use change. At this time scale, 
many exchanges (or fluxes) can be expected to cancel out, thereby enabling a focus on net 
carbon changes. 

4. Carbon can take different paths. In most years, the annual net effect of photosynthesis, 
respiration and decomposition is a relatively small increment in stored carbon. 
Nevertheless, accumulated gains sometimes are lost in drought years where fire consumes 
organic matter. Carbon can also move off-site. Organic products (e.g., wood, resin, grain, 
tubers) leave the area of production and become part of trade flows, usually being 
concentrated in urban systems and their waste dumps. Only small amounts of stored 
carbon may leach out of soils and enter long-term storage pools in freshwater or ocean 
environments, or contribute to peat formation.  

Link this carbon analysis with 
on-going carbon MRV efforts 
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Deforestation and carbon balance  
5. When forests are converted to other uses, a large net carbon release occurs into the 
atmosphere. The process can happen in a matter of hours, in case of fire; over a number of 
years, due to decomposition; or over decades, where wood products enter domestic/urban 
systems. The net emissions can be estimated by examining the decrease or increase in the 
‘terrestrial carbon stocks.’ Since tropical forests in their natural condition contain more 
aboveground carbon per unit area than any other land cover type (Gibbs, et al., 2007), they 
are important to consider within effort to mitigate climate change. 

6. Consistent accounting for all carbon inflows and outflows is more complex than a 
simple check of the bottom-line change in total global carbon stock. Current estimates 
stating that ‘land use, land use change and forestry’ (LULUCF) is responsible for 15-20% of 
total greenhouse gas emissions is based on this type of stock accounting. Net sequestration 
is occurring in temperate zones and large net emissions in the tropics. Tropical peat areas 
are particularly small source areas with high emission estimates (IPCC, 2006). For the 
purposes of estimating REDD+ opportunity costs, carbon measures of different land uses 
are required in order to estimate the carbon effects from numerous types of land use 
change.  

Carbon is not just carbon 
7. Carbon is found in different pools. Terrestrial carbon stocks of all carbon stored in 
ecosystems  are in: 

• Living plant biomass (above- and below-ground) 
• Dead plant biomass (above- and below-ground) 
• Soil (in soil organic matter and, in negligible quantities, as animal and micro-

organism biomass) 
 

8. In the IPCC guidelines, these pools are described as above-ground biomass, below-
ground biomass, dead wood and litter, and soil carbon. These are summarized in Figure 5.1 
described in more detail below. 

Table 5.1. Four IPCC carbon pools 
 Alive Dead 
Above ground Biomass (, stems, branches leaves of 

woody and non-woody vegetation) 
Wood and litter 

Below ground Biomass (roots, fauna) Soil carbon (including peat) 
 



 

 
5-4 

 
Figure 5.1. Terrestrial carbon pools 
Source: Adapted from Locatelli (2007) and EPA (2009), by Honorio and Velarde (2009). 
 

Living plant biomass carbon 
9. Above-ground biomass comprises all woody stems, branches, and leaves of living trees, 
creepers, climbers, and epiphytes as well as understory plants and herbaceous growth. For 
agricultural lands, this includes trees (if any), crops and weeds.  

10. Below-ground biomass comprises roots, soil fauna, and the microbial community.  

Dead plant biomass carbon 
11. The dead organic matter (i.e., necromass) includes fallen trees and stumps, other 
coarse woody debris, the litter layer and charcoal (or partially charred organic matter) 
above the soil surface. Carbon stock of litterfall in a tropical rain forest is typically about 5 
tC /ha/yr, with a mean residence time in the litter layer of about 1 year. Dead trees may 
take about 10 years to decompose, and necromass is about 10% of total aboveground 
carbon stock in a healthy natural forest. Since logging tends to focus on harvesting the 
more valuable trees and damage many others, necromass may be 30-40% of the 
aboveground carbon stock after logging. If fire is used in land clearing, the resulting carbon 
will be emitted directly or reside for approximately a decade. 

Soil Carbon 
12. Soil carbon consists of organic carbon, inorganic carbon, and charcoal. Bicarbonate, an 
inorganic form of carbon, exists in calcareous soils, but is insignificant in neutral and acid 

y 
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soils. The main form of soil carbon is in various stages of humification, with turnover times 
reaching up to 100’s (or even 1000’s) of years. In peat soils, turnover times can reach 
1000’s of years.  

13. For mineral soils, the change in soil organic carbon is relatively small and mostly 
occurs in the top 30 cm of the soil layer (IPCC, 1997).  Organic carbon concentration in soils 
generally decreases with depth, with a higher fraction of relatively stable pools 
accompanying the lower total carbon concentration. The strongest response of soil carbon 
stock to land cover change occurs in the top 20-30 cm. With empirical data, however, only 
changes in the layer 0-5 cm depth are often noticeable.  

14. The change in soil carbon content due to land use change is rarely larger than 20 Mg 
carbon per ha (IPCC, 1997; Murty, et al., 2002), unless in wetland conditions. Under specific 
climatic conditions (e.g., with an annual rainfall surplus but a prolonged dry season in flat 
terrain with deep groundwater storage) trees with deep root systems are able to prolong 
the growing season. in addition, the turnover of fine roots at depth adds soil carbon stocks 
at depths that can lead to soil carbon changes after conversion in excess of 20 Mg carbon 
per ha. For example, when Imperata grassland is converted to oil palm plantation on 
mineral soil, an increase in soil carbon stock of as high as 13.2 ± 6.6 Mg /ha from the initial 
stock of 40.8 ± 20.4 Mg /ha can be expected  (Agus, et al., 2009). 
 

Box 5.1. Most of the biomass is in the few really big trees 
The carbon stock in an individual tree depends on its size. Trees of 10-19 cm stem diameter 
(measured at standardized 1.3 m above the ground and called ‘diameter at breast height’ or 
DBH), may have a biomass of around 135 kg/tree. With approximately 900 trees per ha, the 
corresponding associated biomass is 121.5 t/ha. Yet, most of the biomass is in the few large 
trees. With a DBH of 50-70 cm, the mass per tree could be approximately 20,000kg (20 t). 
With 10 trees/ha, the corresponding biomass would be about 200 t/ha. The below table 
summarizes this example.  

Thus, the implications of large trees on biomass (and carbon) per ha is very significant. 
Although selective logging may only remove a few trees per ha (and damage surrounding 
ones), timber harvests can cause substantial decreases in total biomass and carbon stock.  

Example of tree biomass composition in a hectare of tropical forest 
DBH 
(cm) Kg/tree No. Trees 

/ ha 
Mass 

(t/ha) 
10-19  135 900 121.5 
20-29 2 250 70 157.5 
30-49 8 500 20 170.0 
50-70 20 000 10 200.0 
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Priority carbon pools for national accounting 
15. The decision of which carbon pools should be measured as part of a national carbon 
accounting scheme are determined by several factors, such as:  

• availability of financial resources,   
• availability of good quality of existing data,   
• ease and cost of measurement,  
• the magnitude of potential changes in carbon pools. 
 

16. In IPCC terminology, the prioritization of carbon pools process is regarded as “key 
category analysis.” Major sources and sinks of CO2 are identified at specific reporting levels: 
Tier 1 or global scale data for non-key categories (or lower priority categories) and Tier 2 
and 3 or finer scale/resolution for key categories. (IPCC, 2006, Vol 4, Chapter 1.3.3) 

17. Since carbon estimates at the national level could be incomplete and highly uncertain, 
a principle of conservativeness should be applied to increase credibility of the estimates 
(Grassi et al., 2008). Conservative analysis implies not overestimating, and/or minimizing 
the risk of overestimation and error propagation. For example, not including soil carbon in 
the accounting is a conservative approach. Although fewer REDD+ credits might be 
obtained as a result, the inclusion of soil carbon could decrease the credibility of the 
estimates of total emissions reductions. (For details of the application of this principle see 
Grassi et al., 2008.) 

18. Given limited resources, fieldwork to estimate carbon stocks needs to be selective. The 
highest carbon pools with the greatest likelihood of conversion/emission should 
prioritized. (See Chapter 4 for more information on drivers of deforestation and 
degradation). For example, the more vulnerable forest areas to change tend to be those 
with higher opportunity costs, such as forests next to roads. 

19. Table 5.1 summarizes priorities in measuring different carbon pools along with the 
methods and relative cost involved. In general, we suggest giving the highest priority to 
tree biomass and soil carbon. The carbon stock of field crops tends to be low and can be 
inferred from the literature. For peatlands, the highest carbon pool is the peat itself and 
thus measurement of its carbon content is highly recommended.45       

                                                        
45 Nevertheless, it is not clear whether or how peatlands will be included in REDD+. 
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Table 5.2. Priorities and costs of measuring carbon by land use 

 
Note: Higher values indicate greater priority (shaded green) or higher cost (shaded red). Example 
from Indonesia.  
Source: Authors. 
 

Establish a carbon analysis framework 
20. Clear and simple approaches to carbon stock measurement contribute to transparent 
national accounting. The simplified approach proposed here is for establishing a carbon 
basis for opportunity cost analysis. Although more straightforward, the approach is not 
always consistent with the detailed carbon calculation methods stipulated in the Good 
Practice Guidance (GPG) of the IPCC.46 The GPG provides procedural information to classify, 
sample and collect data for national accounting of carbon stocks and greenhouse gas 
emissions and removals associated with Agriculture, Forestry and Other Land Use (AFOLU) 
activities. Generally, all data should be: 

• Representative: Capable of representing land-use systems/land cover 
categories, and conversions between land-use systems/land cover, as 
needed to estimate carbon stock changes and GHG emissions and 
removals;  

• Time consistent: Capable of representing land-use systems/land 
cover categories consistently over time, without being unduly affected 
by artificial discontinuities in time-series data; 

• Complete: All land within a country should be included, with 
increases in some areas balanced by decreases in others, recognizing 

                                                        
46 Examples include: (1) the use of a 4:1 default value for the shoot/root ratio, (2) a carbon conversion factor 
of 0.46 for living biomass, necromass and soil organic matter. 

Cost Priority Cost Priority Cost Priority

Tree biomass DBH and allometric  
equations 2 4 2 4

Understorey 
biomass Destructive samples 4 2 4 1

Crop Literature, 
secondary data 2 3

Dead biomass Non destructive 2 2 2 1

Litter Destructive 3 2 2 1

Soil C Destructive: density 
and C content 4 3 4 3 4 3

C pool Method Forest Perennial Annual Crop
Land use
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the bio-physical stratification of land if needed (and as can be 
supported by data) for estimating and reporting emissions and 
removals of greenhouse gases; and 

• Transparent: Data sources, definitions, methodologies and 
assumptions should be clearly described. 

 

Two methods for carbon measurement 
21. Changes in average carbon stocks per land cover can be monitored using various 
methods, including secondary datasets and estimations from the IPCC (2003b). In addition, 
countries can conduct in situ forest inventories and sampling using permanent plots for 
land-use systems. To measure changes in carbon stocks resulting from degradation, the 
IPCC (2006) recommends two non-mutually exclusive options (Figure 5.2):  

• the stock-difference method, and 
• the gain-loss method.  

 

22. The stock-difference method uses carbon stock inventories from land uses to 
estimate sequestration or emissions. Carbon stocks in each carbon pool are estimated by 
measuring the standing stock of biomass at the beginning and at the end of the accounting 
period. 

23. The gain-loss method is based on growth models with an ecological understanding of 
how forests and other land uses grow, along with information on natural processes and 
human actions that lead to carbon losses. Biomass gains are estimated on the basis of 
typical growth rates in terms of mean annual increment minus biomass losses estimated 
from activities such as timber harvesting, logging damage, fuelwood, and other products 
collection, overgrazing as well as from fire (Murdyarso, et al., 2008). The cost of this 
method is usually lower because carbon pools are determined only once in the beginning 
and then modeled over time. 
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Figure 5.2. Comparison of stock-difference and gain-loss methods  
Source: Modified from Murdyarso et al., 2008 

 
24. The choice of measurement method will depend largely on the data availability, and 
on the resources and capacities to collect new data. If the purpose is national carbon 
accounting, a combination of both methods can be used. Consistency checks are needed, 
however, if methods are combined. 

25. The measurement approach used in this training manual is the stock-difference 
method, because we need a single ‘typical carbon stock’ of a land use system (t C/ha), for 
comparison with a typical economic attribute (NPV) ($/ha) to calculate the ratio for any 
type of land use change.  

Estimate “typical carbon stock” of a land use 
26. For the purpose of a REDD+ opportunity cost analysis, a value of a typical carbon stock 
is needed for each land use (in IPCC, 2000, this was termed a time-averaged carbon 
stock). This single value is used for carbon accounting purposes and compared with a 
single-value profitability estimate of net present value (NPV). A typical carbon stock value 
integrates the gains and losses over a life-cycle of a land use. Below, we discuss (1) steps to 
establish a national carbon accounting system, (2) approaches for measuring carbon, and 
(3) assessment of carbon data quality, sampling procedures and field measurements of 
carbon stocks. 

27. Determining the typical carbon stock starts by recognizing the life-cycle of the land 
use (see Figure 5.3). A ‘time-averaged’ carbon stock recognizes the dynamics of land uses 
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(Palm et al., 2005). This approach accounts for tree re-growth and harvesting, and allows 
the comparison of land uses that have different tree growth harvest rotation times and 
patterns.  

28. For land uses that are in equilibrium with regard to their age (all ages are equally 
likely), the time-averaged value will also be the spatially-averaged value, when applied to a 
sufficiently large landscape. Such an estimate equals the sum of gains and losses of carbon. 
For land use systems that are increasing in area, the spatial average will be lower than the 
time-averaged value, and likewise the spatial average will be higher than the time-averaged 
value for systems that are in decline. Therefore, the carbon loss or sequestration potential 
of a land use system is not determined by the maximum carbon stock of the system at any 
one point of time, but rather by the average carbon stored in that land use system during 
its life-cycle (ASB, 1996). Specific steps to calculate time-averaged carbon stock for a 
monoculture and mixed systems are in Appendix D. 

 

Figure 5.3. Aboveground carbon stock and cash flows of three land uses  
 

´Time-averaged carbon stock´ in agroforestry systems  
29. In agroforestry systems, where farmers incorporate various trees on farms, the carbon 
stocks behave differently than in cropland or managed forests. For example, trees in 
agroforestry systems are harvested more frequently than under forest management. To 
estimate carbon stocks, it is useful to develop annual time courses of the carbon stocks. In 
Figure 5.4, solid (darker) lines represent the annual carbon stocks, while dotted (lighter) 
lines depict corresponding time-averaged carbon stocks of: 230 tC/ha for forest, 80 tC/ha 
for agroforestry, and 29 tC/ha for annual crops or imperata grasslands of degrading 
productivity.  
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Figure 5.4. Example carbon stock changes of different land uses 
Source: IPCC/LULUCF-section 4 (2000) 

 

Accounting for forest degradation 
30. Even without converting forests to other uses, carbon emissions can be produced from 
forest degradation. Forest degradation can be defined as direct human-induced long-term 
loss (persisting for X years or more) of at least Y per cent of forest carbon stocks (and forest 
values) since time (T) and not qualifying as deforestation (IPCC, 2003a). Despite this 
definition, agreement has not yet been reached on an operational procedure for 
monitoring, reporting and verification (MRV) of degradation. The measures of X, Y and 
minimum area are difficult to specify since the values depend on types of degradation 
activities and forest composition (Murdiyarso et al., 2008).  

31. Common activities that degrade forests in the tropics include (GOFC-GOLD, 2009):  

• Selective logging 
• Large-scale and open forest fires 
• Collection of fuelwood and non-timber forest products 
• Production of charcoal, grazing, sub-canopy fires, shifting cultivation. 

32. Apart from selective logging, few analyses has been made of the impacts of these 
processes on the loss of forest biomass and the time needed for regrowth. Estimating the 
carbon stocks of forests in contexts of deforestation and degradation requires monitoring 
of: (1) changes in forest area by forest type and (2) average carbon stocks per unit area and 
forest type (IPCC, 2003b). A Tier 1 analysis keeps track of area changes within forest 
categories and uses global default values for carbon densities of those forest categories. At 
Tier 2, precision and accuracy are increased by estimating carbon densities using country-
specific data instead of global default values. A Tier 3 analysis uses models and inventory 
systems to adjust estimates to national circumstances repeatedly over time, thereby 
measuring changes in carbon densities within the accounting period.  
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Table 5.3. Measuring forest degradation: stock-difference and gain-loss methods  
Activity Stock-difference method Gain-loss method 

Selective logging 

• Legal harvesting usually requires 
measurement of biomass after harvesting, 
thus necessary data should be available.  
• Illegal harvesting would require additional 
data collection. 
• Data on undisturbed forest can be used as a 
proxy if pre-harvesting data for particular 
sites is not available. 

• Uses estimates of mean 
annual increment (MAI)and 
centralized records on timber 
extraction activities.  
• Reliability depends on 
honesty of timber companies in 
reporting rates of extraction.  

Large-scale 
forest fires 

• Reference data from undisturbed forest can 
be used for the pre-fire situation, but forest 
inventory would be needed to measure post-
fire biomass. 

• Losses due to fire can be 
estimated from the area 
burned and emission factors 
used to estimate the emissions 
based on the biomass lost.  

Harvesting of 
fuelwood and 
non-timber 
forest products 

• Pre-harvesting biomass levels could be 
estimated from typical levels in undisturbed 
forest, but in practice much of the forest 
subject to these uses will already be partially 
degraded at the start of the accounting 
period.  
• In areas already under individual or 
community management, pre- and post 
period forest inventories can be carried out 
by forest users. 

• Data on losses (e.g., registers 
of commercial wood-based 
products, estimates of fuel 
wood use) may be available. 
• Fuel wood off-take could also 
be calculated using population 
and data on average household 
fuel wood consumption. 
• Data on gain available from 
standard MAI statistics. 

Cattle grazing, 
shifting 
cultivation, sub-
canopy fire 

• Pre-harvesting biomass levels could be 
estimated from typical levels in undisturbed 
forest, but most forests subject to these 
changes will already be partially degraded at 
the start of the accounting period.  
• Community measurements can be made 
and can help establish local ‘ownership’ of 
the process. 

• Data on gain are available 
from standard MAI statistics. 
• Data of losses are rarely 
available in national statistics. 

Source: Murdiyarso, et al. 2008. 
 
 

Diagnosing existing carbon data  
33. When compiling or reviewing estimates for the typical carbon stocks of land uses, a 
variety of data may already be available. Such information can be categorized according to 
IPCC tier: 

• Tier 1: Global scale data (remote sensing imagery).  
• Tier 2: National scale data   

o forest inventory data, often focused on timber volumes of commercially-
attractive timber species, yet potentially including all trees, 

o Primary data that can be converted to total biomass estimates, 
• Tier 3: Plot/watershed data  
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o bio-economic models of biomass production under different management 
regimes, calibrated on plot-level biomass data (usually available for main 
crops and some plantation crops), 

o ecological data on long-term plots that include all biomass and necromass 
pools. 

34. As mentioned earlier, the prioritization of carbon pools or “key category analysis” 
takes into account the major sources and sinks of carbon and associated reporting level. 
Non-key categories, or lower priority categories, can be reported with Tier 1 data whereas 
key categories should use Tier 2 and 3 or finer scale/resolution data (IPCC, 2006, Vol. 4, 
Chapter 1.3.3). Existing carbon data within a country may be of varying types and quality. 
Therefore, a diagnosis of available national carbon data is needed to identify gaps and areas 
of weakness, where new data collection is warranted.  

35. Since virtually all types of remote sensing depend on ground-based carbon stock 
measurements, efforts to spatially extrapolate and analyze temporal changes require 
carbon data sampled using transparent protocols. With any such data their usefulness and 
value depend on: 

• adequate description of the method used in selecting the plots, 
• completeness of records that allow the plot to be interpreted as part of a land use 

system with known intensity and time frame, 
• representativeness of the collection of plots for the domain to be represented (e.g., 

across climatic, soil, and accessibility variations), 
• adequate description of the method used in measurement, including the sample size 

or sampling intensity used in ‘plot-less’ sampling , 
• viability of the primary data and opportunity for further calculations. 

36. Questions regarding any of these issues can make data suspect for use, and may at the 
least warrant a sampling program to fill gaps and check uncertain parts of the data set. 

 

Measuring carbon of different land uses  
37. A basic premise of the IPCC Good Practice Guidance (GPG) is that land can be allocated 
to one (and only one) of six categories described below. A land use may be considered a 
top-level category for representing all similar land-uses, with sub-categories describing 
special circumstances significant to carbon content, and where data are available.47 

38. This IPCC GPG assumption of non-ambiguous land categories may agree with existing 
institutional traditions in some countries, but the premise can create challenges. Where 
does a rubber agroforest on peatland belong? Such a land use (1) meets the minimum tree 
height and crown cover of forest, but is (2) on a wetland, and (3) its production is recorded 

                                                        
47 For REDD+ opportunity cost analysis, sub-categories are also needed for land use systems generating 
different levels of profit. 
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within agricultural statistics. Therefore, consistency of accounting methods across land 
categories requires a good understanding of such relations. The IPCC land categories are: 

 (i) Forestland  
39. This category includes all land with woody vegetation consistent with the thresholds 
used to define Forestland in the national greenhouse gas inventory. It also includes systems 
with a vegetation structure that currently fall below those thresholds, but in situ could 
potentially reach the threshold values used by a country to define the Forestland category. 

(ii) Cropland 
40. This category includes agricultural land, including rice fields, and agroforestry 
systems where the vegetation structure (current or potentially) falls below the thresholds 
used for the Forestland category. 

(iii) Grassland 
41. This category includes rangelands and pasture land that are not considered Cropland. 
It also includes systems with woody vegetation and other non-grass vegetation such as 
herbs and brushes that fall below the threshold values used in the Forestland category. The 
category also includes all grassland from wild lands to recreational areas as well as 
agricultural and silvopastoral systems, consistent with national definitions. 

(iv) Wetlands 
42. This category includes areas of peat extraction and land that is covered or saturated 
by water for all or part of the year (e.g., peatlands) and that does not fall into the 
Forestland, Cropland, Grassland, or Settlements categories. It includes reservoirs as a 
managed sub-division and natural rivers and lakes as unmanaged sub-divisions. 

(v) Settlements 
43. This category includes all developed land, including transportation infrastructure and 
human settlements of any size, unless they are already included under other categories. 
This should be consistent with national definitions. 

(vi) Other land 
44. This category includes bare soil, rock, ice, and all land areas that do not fall into any of 
the other five categories. It allows the total of identified land areas to match the national 
area, where data are available. If data are available, countries are encouraged to classify 
unmanaged lands by the above land-use categories (e.g., into Unmanaged Forest Land, 
Unmanaged Grassland, and Unmanaged Wetlands). This will improve transparency and 
enhance the ability to track land-use conversions from specific types of unmanaged lands 
into the categories above. 
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Box 5.2. Off-site carbon storage 
Part of the biomass of forests, tree crop plantations, or annual cropping is removed from 
the field and enters within economic trade flows. Although efforts have been made to 
assign the carbon stocks of such products to the areas where they originated (especially in 
the case of wood), the integrity and transparency of the global carbon accounting system 
would be at risk if such calculations were to be made.  

Current IPCC (2006) guidelines do not include off-site products as part of the system, 
although stock changes in the forest can be estimated from the difference between biomass 
increment and offtake (e.g., removals, harvests), if there are reliable data for both. Carbon 
stock accounting benefits from the simplicity that at any point in time all stocks can be 
inspected on site.  

 

C stock sampling and measurement 
45. Once the carbon pools to be measured are prioritized and the measurement method is 
defined, sampling will follow a series of guidelines with respect to the:  

• sampling scheme, including stratification (See Chapter 4 of this manual, Dewi and 
Ekadinata, 2008, and Winrock, 2008) 

• hierarchical system for land use classification (see Chapter 4). 

46. Guidelines for obtaining the number of samples units needed can be found in Box 5.4. 
It is important to note that increasing the desired level of accuracy and precision will have 
cost implications.  

 

Box 5.3. Steps to determine the number of sampling plots  
Step 1. Select the desired level of accuracy and precision  
The selection of precision and accuracy level is almost always related to the resources  
available and the demands of the buyer (the market). The level of precision required will 
have a direct effect on inventory costs. Usually, the level of precision for forest projects 
(sampling error) is +/-10% of the average carbon value with a level of confidence of 95%. 
Small-scale Clean Development Mechanism (CDM) forestry projects can use a precision 
level up  +/- 20% (Emmer, 2007). Nevertheless, specific levels of precision can be defined 
for each type of land use system of the inventory. The highest precision generates higher 
costs.  

The following figure illustrates the relationship between the number of plots and the level 
(degree) of precision (+/- % of total carbon stock in living and dead biomass) with 95% 
confidence for four types of combined carbon pools (above- and below-ground biomass, 
litter and soil organic matter) present in six vegetation categories of the Noel Kempff 
project in the tropical forest of Bolivia.   

To achieve a precision level of +/-5%, 452 plots are needed, whereas only 81 plots would 
give a +/-10% level of precision. This example illustrates the cost-benefit implications of a 
higher precision level. 
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Source: IPCC 2003b, Chapter 4-3.  

 
 

Step 2. Select areas for making preliminary data gathering 
Before determining the number of plots required for monitoring and measurement carbon, 
an estimate of the existing variance must be obtained for each type of deposit (e.g. soil 
carbon) in each land use system corresponding to the land use legend. Depending on the 
occurrence of the same stratum in the project area, each layer must be sampled over an 
area (repetition), so that results have statistical validity. Initially, a recommended set is 
four to eight repetitions for each land use system. 

Step 3. Estimating the average, standard deviation, and variance of carbon stock 
preliminary data 
The time-averaged carbon stock is calculated of each land use system or land use legend 
from the preliminary data (or obtained from literature if one can find studies of similar 
area).  

Output: Average, standard deviation and variance of carbon per land use system/legend.  

 

                      

Average                                               Variance                     Std. deviation 

 
Step 4. Calculating the required number of sampling plots 
Once the variance for each land use system/legend is known, the desired level of precision 
and estimated error (referenced in the confidence level selected) and the number of 
sampling plots required can be calculated. The generic formula for calculating the number 
of plots is as follows: 
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Formula for more than one land use system: 

 

Where: 
n  = number of plots 
E  =  allowed error (average precision x level selected).  
As seen in the previous step, the recommended level of accuracy is ± 10% (0.1) of average 
but be up to ± 20% (0.2). 
t = statistical sample of the t distribution for a 95% level of confidence (usually used as a 
sample number) 
N = number of plots in the area of the layer (stratum area divided by the plot size in ha) 
s  =  standard deviation of land use system 
 
Source: Section adapted from Rugnitz, et al., 2009. 
 
Online tools for calculating number of plots: Winrock International has developed an 
online tool: “Winrock Terrestrial Sampling Calculator” that helps calculate the number of 
samples and estimating the costs for base line studies as well as monitoring.  
See: http://www.winrock.org/ecosystems/tools.asp   
 
 
47. Once the number of sampling units is calculated, a design of the sample is needed. 
Figure 5.6 summarizes the recommended sizes of plot and sub-plots under each sampling 
unit.   

 

http://www.winrock.org/ecosystems/tools.asp
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Figure 5.5. Recommended plot and sub-plots sizes for carbon stocks sampling 
Source: Hairiah, et al. 2010. 

 

Plot level sampling 
Measuring carbon stock at the plot level requires assessing: 

• Biomass  
o destructive sampling of small plots of understory vegetation, annual 

crops, or grasses, and  
o non-destructive tree biomass estimates using allometric biomass 

equations.  
o default values for below-ground biomass (roots).  

• Necromass  
o destructive (for litter remains on soil surface) or  
o non-destructive (for dead wood). 

• Soil organic matter. 
 
48. The procedures of carbon measurement of various pools are explained in detail in 
Hairiah, et al., 2010 (in English), Rugnitz, et al., 2009 (in Spanish and Portuguese) and 
several additional resources are available from GOFC-GOLD (2009). 

49. The most important carbon stock pool is tree biomass. To calculate carbon stocks in 
trees we need to know: 

• total number of trees per ha,  
• distribution of their diameter at breast height,  
• two parameters that relate biomass to stem diameter (‘allometrics’).   

Trees with dbh > 30 cm are measured inside the bigger sub plot  

Trees with dbh in the range 5-30 cm are measured inside the main sub plot 

Trees with dbh < 5 cm are measured in the understory and litter sample plots 

Understory and litter layer sample plot 
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50. The devil is in the details. It is necessary to both (1) use the correct allometric 
equations (and to know when not to use the standard ones), and (2) to know the diameter 
frequencies, especially those for big trees. Using allometric equations from the literature 
can simplify the carbon stock calculations at the landscape level. Guidelines for choosing 
the right allometric equation(s) should be followed (Chave, et al. 2005; see Table 5.3 for a 
description of the criteria). If any of the criteria are not met, it is recommended to develop 
local allometric equations. If there are several equations that meet the criteria, choose the 
one with highest value for R2 (for a detailed procedure see Rugnitz et al., 2009, p.51-59).  A 
list of allometric equations by species and type of forest is shown in Appendix C.  

 
Table 5.4. Criteria for choosing an allometric equation 

Criteria Description 
Soil and climate 
conditions 

 Similar climatic conditions within the sample area to that of 
where the equation was developed for: 

- Annual mean temperature 
- Annual precipitation  
- Altitude 

 Wherever possible, similar soil conditions.  
 Harvested species  At least 30% are of forest species used in the equation are 

present in the sample area 
 Tree sizes  Similar diameter at breast height (DBH) and tree height  

Source: Adapted from Rugnitz, et al., 2009.  
 
 
Box 5.4. Large trees, large roots... but not always  
Large trees tend to have large roots. For mixed tropical forests, the ratio of above to below-
ground biomass is approximately 4:1. In very wet conditions, the ratio can shift upwards to 
10:1; under dry conditions it may decrease to 1:1 (van Noordwijk et al., 1996; Houghton et 
al., 2001; Achard et al., 2002; Ramankutty et al., 2007). As measurement of root biomass is 
not simple (although there is a method that uses the root diameter at stem base and 
allometric equations), we normally use default assumptions for the shoot:root ratio based 
on available literature (Cairns et al., 1997; Mokany et al., 2006). 
 
 

From plot to land use 
51. For calculating carbon stock changes at the landscape level, we need data of the typical 
carbon stock or time-averaged carbon stock of each land use - not the carbon stock of each 
plot under current conditions. Here, we refer to the spreadsheet provided with this manual. 
The spreadsheet OppCost in the file SpreadsheetexercisesREDDplusOppCosts.xlsm 
links the carbon stocks for land use change according to land use category. A couple of 
examples to calculate time-average carbon stock for monoculture and diverse systems are 
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shown in Appendix D. Estimated values of time-averaged carbon stock of selected land-use 
systems from various countries are shown in Table 5.4 below. 

Table 5.5. Time-averaged carbon stock (mean and range) of selected land uses 

Land use 
Time averaged 
carbon stock, 

Mg /ha 
Reference, remarks 

Primary forest (Indonesia) 300 (207-405) Palm et al., 1999 
Selectively logged forest (Central 
Kalimantan, Indonesia) 

132 Brearly et al., 2004 

Shrub/crop rotation 15 Prasetyo et al. (2000) 
Imperata grassland 2 Palm et al. (2004) 
Oil palm (Indonesia) 60 Recalculated from Rogi (2002) 
Oil palm (Indonesia) 40 Recent data ICRAF-Indonesia 
Rubber agroforest, 25 year old 
(Sumatra, Indonesia) 

68 Averaged from Palm et al. (2004) 

Rubber agroforest, 40 year old 
(East Kalimantan, Indonesia) 

100 Rahayu et al., 2004 

Coconut plantation 60 Adjusted from 98 Mg ha-1 according to 
IPCC (2006) based on Rogi (2002) 

Jatropha plantation 10 June (2008) based on  Niklas (1994) 
Tea plantation 28 Adapted from Kamau et al. (2008) 
Sugar cane 9 Soejono 2004, modified 
Coffee-based agroforestry system 51 Hairiah (2007, for shaded coffee) 
Cacao 58 Lasco et al. (2002) 

 

From land use to sub-national region 
52. Once the time-averaged carbon stock per land use system is obtained, we need to 
calculate/estimate the time-averaged carbon by land cover in order to extrapolate to 
landscape level. For example, in Figure 5.6, the “Plantation” land cover comprises five 
different land uses (pinus, agathy, mahogany, clove, and bamboo). Because it is not possible 
to distinguish these land uses at the land cover level (and the time-averaged carbon stock 
has relative small variation/deviation), an average for the land cover is estimated.  

53. Once the time-averaged carbon stocks per land cover have been estimated, use them 
to extrapolate by multiplying by the area in the landscape of analysis in year y using the 
results of a GIS analysis. Then repeat the procedure in the map of year y+10, and then 
calculate the difference in carbon stocks.  
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Figure 5.6. Extrapolating carbon from land uses to land covers at the landscape level 
Source: Hairiah, et al, 2010.  
 

From sub-national region to nation 
54. Scaling-up landscape carbon estimates to sub-national and national levels requires a 
combined effort of different government agencies, NGOs, and other institutions. At the 
national level, the data available normally corresponds to land cover level. The availability 
of specific spatial national data sets varies from country to country and the information is 
often scattered among different Ministries (Agriculture, Fisheries, Environment, Mining 
and Energy) or specialized government agencies.  

55. Within countries, different areas with similar conditions have often been identified 
already with respect to climatic, elevation or vegetation. These different classes should be 
used as the basis for the stratification process within sampling scheme (Box 5.4) and the 
development of a land use map. Such information may likely be sufficient to spatially 
differentiate areas of similar carbon content, especially within forests. However, some 
weaknesses of the approach derive from: 

• errors in classification of the pixels into land cover classes,  
• uncertainty on the average carbon stock values per class, 
• changes in carbon over time. 

56. Inaccuracy and uncertainty of forest inventory data can range up to a multibillion-ton 
difference in the global stock of carbon in trees. Sources of error include area of forest, 
timber volume per area, biomass per timber volume, and carbon concentration. Since the 
factors are multiplied together to estimate carbon stock, a more precise measurement of 
the most certain variable improves accuracy little. In contrast, a 10% error in biomass per 
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hectare, for example, can cause a discrepancy equivalent to a mistake of measuring forest 
area by millions of hectares. Thus, unbiased sampling of regional forests is of important to 
accurately monitoring of global forests (Waggoner, 2009). 

57. From the perspective of an opportunity cost analysis, the land use categories are key 
to identify and quantify the different land uses at the landscape and national level. Each 
land use should have a corresponding carbon content. By comparing and calculating the 
differences between carbon content of the different land uses in year y and year y+5, y+10 
or the intervals defined, it would be possible to estimate the change in carbon stocks. 
Nevertheless, either using Tier 2 or Tier 3 data, weaknesses of the approach derive from: 

• Errors in spatial classification by land use types, combining ‘land cover phases’ with 
on-the-ground characteristics and management styles, 

• Uncertainty on shifts in time-averaged carbon stocks within the land use categories. 

Building a national monitoring system 
58. The UNFCCC (2009) has identified key elements and capacities for building national 
carbon monitoring systems for REDD+ as well as components and required capacities for 
establishing a national monitoring system for estimating emissions and removals from 
forests. These key elements include:  

• Being part of a national REDD+ implementation strategy or plan, 
• Systematic and repeated measurements of all relevant forest-related carbon stock 

changes, 
• The estimation and reporting of carbon emissions and removals at the national level 

that either use or are in line with the methodologies contained in the IPCC good 
practice guidance for LULUCF due to the need for transparency, consistency, 
comparability, completeness, and accuracy that should characterize such systems. 

59. The key components and required capacities for establishing a national monitoring 
system for estimating emissions and removals from forests are explained in detailed in 
UNFCCC, 2009, pages 8-10 and include: 

• planning and design, 
• data collection and monitoring, 
• data analysis, 
• reference emission levels, and 
• reporting. 

60. Appendix B provides a summary table of required capacities for a national 
monitoring system of emissions.  

61. At a finer scale, the challenges about data collection (Tier 3) equally refer to data 
collected by ‘forest professionals’ and community members.  Quality control measures that 
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identify outliers and unexpected results need to be in place for whoever collects the 
primary data. Unexpected results may indicate an opportunity to learn, if they are 
confirmed via cross-checking. Nevertheless, inaccurate “participatory” results may skew 
overall results if retained in the dataset. 

A forest carbon database 
62. Carbon data is becoming more available. A Forest Carbon Database and exchange 
system is being developed within the public domain (CIFOR, 2010; Kurnianto and 
Murdiyarso, 2010). The database helps national and sub-national monitoring, reporting 
and verification of REDD+ activities. The open access database is designed to allow 
participation of researchers and practitioners, who conduct regular forest inventory, 
manage sample plots, and conduct research on forest carbon stocks and related topics. 

63. The system allows the accounting of the five carbon pools. Supporting information can 
also be added (e.g., site details, land cover, climate and soil) to share the context of the 
carbon stock data. If the entire inventory of data is uploaded, the carbon stock will be 
automatically calculated, per factor that recognize ecosystem factor (e.g., rainfall, 
temperature). The system: 

• reduces duplicate data collection by making data available, which have 
already been collected. This reduces costs. 

• provides easy access to data that cannot be readily replicated, such as large 
surveys that are too expensive to replicate. 

• enables comparison carbon stocks across land use types based on data 
provided by other contributors. 

Cost estimates of measuring carbon and capacity building 
64. Building a national or sub-national carbon stock inventory is a time-consuming and 
costly exercise. Although many countries are familiar with conducting forest inventories, 
carbon accounting is a step further. Carbon accounting outside forests or in mixed land use 
systems also increases the complexity of this task. Therefore, one of the initial major costs 
of measuring carbon faced by some countries is developing  professional capacity. 

65. Given the high and changing carbon content of forests and possibility for inaccurate 
measures, many efforts are advancing to improve cost effectiveness of ground-based 
inventories and surveys. Stratification of forests by carbon stock (e.g. affected by timber 
harvest), not necessarily by forest type, can reduce uncertainty and costs (Brown, 2008) 

66. In the short term, capacity building is desirable at the national/sub-national level. In 
the medium to long term, some cost-effective approaches can be applied, such as: building 
institutional alliances, involving communities, and introducing specific carbon 
measurement topics and field practices in [tertiary] education curricula, and mainly, using 
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available national skills. In some cases, foresters, biologists, ecologists, etc., can transfer 
some of the basic skills for carbon measurement to communities living in the forest and 
forests margins. Such an approach encourages local community participation and reduces 
the costs in the long term. 

67. Table 5.5 summarizes relative costs of using data of different resolution, capacities to 
be used and required capacities. Although the involvement of international organizations 
also results in higher costs, skills can be transferred to national and local levels through 
partnerships and alliances to achieve cost savings. Start-up costs are usually higher than 
maintaining and upgrading the capacities.  

68. Costs will differ according to the country and extent of data gaps. Below are estimated 
costs for equipment and personnel for above-ground biomass sampling in Colombia (Table 
5.6) and a national forest inventory in India (Table 5.7). The average cost of assessing 
forest cover and changes on a per unit area basis in India is US$ 0.60 per km2. The cost per 
unit is derived from the total forest cover of the country, which is estimated at 677,088 
km2. 
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Table 5.6. Relative costs of building a national carbon accounting inventory  

Issue  Scale 
Data resolution Tier 1: Global 

estimates 
Tier 2: National 
available data 

Tier 3: 
Plot/watershed data 

 
 
 
 
 
 
 
 
 
 
Relative cost 

Freely available 
online but need 
expert knowledge to 
interpret data  
 
 
 
 
 
 
$ 

Not freely available 
and scattered in most 
cases.  Costs are 
mostly related to the 
bureaucracy to obtain 
the data 
 
 
 
 
$$ 

Normally only 
available at small 
scale or very specific 
and not freely 
available or need to 
collect own data. 
Sources are local or 
regional institutions 
or government  
 
$$$ 

Capacities used International 
expertise 

National expertise Local expertise  

 
 
 
 
 
 
 
 
 
 
Relative costs 

Personnel from 
international 
organizations (WB, 
UN, NGOs, etc) with 
direct access to 
governments and 
normally involved in 
the start-up of the 
process 
 
$$$$ 

Personnel from 
national government 
agencies and local 
NGOs, education 
institutions, usually 
based in the cities and 
setting national 
standards/policies 
 
 
$$ 

Local experts (e.g., 
universities and 
communities based in 
tropical forests). 
Some have built 
alliances with 
international experts 
or other national 
experts 
 
$-$$ 

Capacities required 
for MRV 

Start-up Maintain Upgrade 

 
 
 
 
 
 
 
Relative costs 

Initial set up, varies 
according to current 
in country capacity 
 
 
 
 
$$$ 

Keeping up to date 
and implement 
quality assurance and 
quality control 
schemes 
 
 
$$ 

Specialized training, 
participation in 
international 
conferences or access 
to international 
standards 
 
$$-$$$ 

Source: Authors.  
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Table 5.7. Equipment and personnel for above ground biomass sampling in Colombia 

Activity Equipment Personnel Time (*per plot, 
**per tree)  

Sampling non-
tree vegetation 
 

1 GPS 
5 m nylon cord 
3 machetes 
1 25 kg or more scale 
1 scale of 1 to 5 kg with 0.1 g 
accuracy 
Plastic bags,  markers, pencil, 
forms  

3 people 
 

40 - 60 minutes* 

Forest inventory 
 

1 GPS 
1 50 meter tape 
1 hypsometer  
3 machetes 
1 2m long wood pole (can be 
obtained in the field) 
30 m nylon cord 
Markers, pencil, forms  

3 people 
 

120-150 minutes* 
 

Trees and palms 
 

1 chain saw 
1 metallic tape  
4 machetes 
1 scale 50 kg or more  
1 scale 1 to 5 kg capacity and 
0,1 g accuracy 
Plastic bags,  Markers, pencil, 
forms  
 

4 people 1-5 hours** 

* Number of plots sampled in a day will depend on the transport time within sample points.  
** Time varies according to the size (and hardness) of the tree. 
Source: Carbono y Bosques, 2005, cited in Rugnitz, et al. 2009.  
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Table 5.8. Cost of measuring forest cover and change using satellite imagery in India 

Components 
Cost per 100 

km2 
(US$) 

% 
 

Human resources (cost of data interpretation by 
technicians, supervision and checking by professionals 
and ground truthing)  

38.5 64 

Cost of satellite data (IRS.P6- LISS III of 23.5 x 23.5 m)* 6.5 11 

Equipment (cost of hardware/software with assumed life 
of 5 years plus day-to-day maintenance, air conditioning 
plant, network, etc.)  

15.0 25 

Total  60.0 100 
*Exchange rate used is 1 US$ = 50 Indian Rupees. In total, 393 satellite scenes using IRS P-6 LISS III cover the 
entire country. The area of each scene is about 20,000 km2. 
Source: UNFCCC, 2009.  
  

Measurement priorities arising from forest condition 
69. The cost of measuring and monitoring degradation depends on national 
circumstances, which include factors such as the:  

• area of forest cover 
• forest stratification (e.g., Democratic Republic of Congo has one major forest 

type, whereas Indonesia and Mexico have four or more) 
• Tier level of carbon accounting  
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Chapter 6. Profits and net benefits from land uses  

Objectives 
Show how to: 

1. Develop an analytical framework to estimate the profits (net benefits) of land 
uses (forest, agriculture, ranching), 

2. Estimate financial budgets of land uses, 

3. Identify sources of cost and revenue information needed to calculate profits, 

4. Develop multi-year profit analysis of land use trajectories, 

5. Identify and critically review methodological and data assumptions.  
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1. Economic analysis has many terms and phrases that are commonly used (Box 6.1). For 
definitions, see Glossary in Appendix A .  
 

Economist words 
Discount rate 
Net present value 
Profit 

Rent 
Net returns 
Enterprise budget 

Capital 
Accounting stance 

 
2. Avoiding deforestation often requires giving up the profits and employment 
opportunities that new land uses would have provided. Reforesting lands may also reduce 
profits and jobs. To know what participating in carbon funds and markets will cost, we 
need answers to questions such as: 

• What profits and jobs are generated by forests? 
• When forests are cut, what do other land uses generate in terms of profit and 

employment levels?  
• When forests are re-established what profits and jobs do they produce? 
• What profits and jobs are associated with non-forested lands before af(re)forestation? 

3. This chapter shows how to estimate two important economic components of 
opportunity costs: profits and employment. Both profits and labor earnings from forests 
and other land uses are needed in order to estimate REDD+ opportunity costs. The 
procedures presented below are based on a bottom-up approach of data collection with 
analysis of revenues and costs for a wide range of land use activities.48 
 

Box 6.1. Profit is about more than just money  
We use the term profits as a convenient shorthand. Other terms, such as net benefits, net 
revenues or net returns could be also used. Profit is a concise and convenient way to 
describe the concept of benefits minus costs.  

It is also important to note that especially in rural regions, the value of production is not 
always based on money. Many products and services have value despite not being  
purchased or sold (e.g., family labor inputs, household consumption of harvests, etc.). 
Imputing, or estimating, the value of these non-market goods and services is a challenge 
facing REDD+ opportunity cost analysis. (Other off-site non-market ecosystem services, 
such as watershed function and biodiversity co-benefits, are addressed in Chapter 8.) Thus 
profit is used in this manual to represent the general concept of net benefits that land users 
receive from a given land use.  
 

                                                        
48 Other less-precise REDD+ opportunity cost approaches are described in the introduction, Chapter 1. 
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Why such detail?  
4. The bottom-up approach provides a rigorous and transparent record of the data 
collected and its analysis, along with a review of methodological assumptions, that are 
essential for accurately estimating REDD+ opportunity costs. When coupled with carbon 
stock information, the profit analysis of land uses will enable policymakers to estimate 
REDD+ opportunity costs.  

5. This chapter helps develop capacities to:  

1) systematically estimate and compare profits generated from different 
land uses,  

2) identify data required for analyses, and  

3) estimate profits according to a three-level hierarchy of activities within 
land uses:  

a) enterprise (or activity) budget, the basic building block of information 
per activity,  

b) land use system budgets account for the multiple enterprises found 
within land uses, 

c) budgets of land use trajectories represent how a land parcel may 
undergo numerous land use changes. 

Upfront issues – clarifying assumptions  
6. Many types of data and procedures are needed to estimate the profitability of land 
uses. Here are some details worth mentioning now. 

Whose perspective? (the accounting stance)  
7. REDD+ programs involve different types of landowners. Such owners can be a country 
or from an individual group (e.g., farmer, rancher, logging company, community). The way 
costs and revenues are calculated – called an accounting stance – represents the viewpoint 
of individual groups49 or the country.50 Although an accounting stance does not affect 
productivity data (e.g., yield/harvest quantities), the difference in perspective determines 
the data collected, prices and discount rates within budget accounts, and thus profit 
analyses. Inappropriate mixing of data and methods is a common and potentially easy 
error, and can result in misleading estimates (Pagiola and Bosquet, 2009). 

8. For the accounting stance of a country, costs and benefits should be valued at the 
social value of resources (i.e., their value in their next-best alternative use) rather than 

                                                        
49 Often termed private or financial profitability. 
50 Often called social or economic profitability. 
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observed market prices. The social value of a resource may differ from that observed in 
markets because of either policy distortions (e.g., taxes, subsidies, import restrictions, etc.), 
or market imperfections51 (e.g., from a lack of property rights). In contrast, costs to 
individual groups are valued at actual prices, including any taxes (Pagiola and Bosquet, 
2009).  

9. Discount rates, and how they are affected by accounting stance, are discussed below. 

Which actual price to use? 
10. Actual prices can differ, often substantially, according to location: farmgate, local 
market, national market and international market. Because of transportation and 
intermediary costs (e.g., of merchants/middlemen), farm gate prices can be 20-95% of a 
national or international market price. Analysts often use the following three types of price 
data, which represent different stages of a product within a product value chain: 

• Farmgate price: the price a farmer receives for outputs or pays for inputs at 
the boundary of the farm. These prices are determined from field surveys 
with farmers or found in agricultural census data. 

• Wholesale or sub-national market price: the price at which agricultural 
products are traded on various domestic markets. These prices include the 
cost of transportation between farm and market, and are available from 
surveys at market locations. 

• Border price: the price at which agricultural goods are exported from the 
country. Such prices are available typically through official statistics. 

11. The recommendation is to use farmgate prices to represent the actual costs on a 
particular land use. Adjustments are needed when farmgate prices are expected to differ 
from prices from where data are collected (e.g., local markets). Local agronomists and 
extensionists often know farmgate prices. Where not, an adjustment factor can be 
estimated – often related to distance to market and quality of road and river 
transportation. 

How to deal with prices distorted by policies? 
12. Prices can also differ due to government market interventions. Inputs subsidies (of 
e.g., agrochemicals, gasoline, fertilizers) can increase profitability; whereas input taxes can 
reduce profits. Similarly, profitability of farm and forest land use is decreased by export 
taxes which typically affect farmgate prices. Output subsidies or import taxes and quotas 
increase prices and profitability.52   

                                                        
51 A situation in which the market does not allocate resources efficiently. Market imperfections can occur for 
one of three reasons: (1) monopoly - when one party has power that can prevent efficient transactions from 
occurring. (2)  a transaction has externalities (side effects) that reduce efficiency elsewhere in the market or 
the broader economy, and (3) nature of certain goods or services (e.g., public goods such as roads).  
52 In some countries, cattle production and oil palm are land uses, for example, that have received subsidies. 

http://financial-dictionary.thefreedictionary.com/Market
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13. Despite all these potential distortions to prices, governments are intervening less in 
markets than before. To enhance global competitiveness and fair trade, international 
agreements on tariffs and trade typically limit the use of such mechanisms. In addition, 
governments often have less financial capability to subsidize economic sectors as budget 
overspending and debt is being controlled by lending organizations (e.g., banks, 
International Monetary Fund, etc.). 

14.  If such price distortions are apparent and important, the recommendation is to have 
separate estimates for (1) costs to land users and budgetary costs to the government (using 
unadjusted prices), and (2) costs to the country (using prices that correct for distortions). A 
Policy Analysis Matrix (PAM) can used to compare of the results different accounting 
approaches (or methodological assumptions) of economic analysis. For example, 
differences in agricultural and natural resource policies and factor market imperfections 
can contrasted with budgets calculated at private and social prices (Monke and Pearson 
1989 is the basic reference). 

Why use a discount rate? 
15. A discount rate is the way economists account for time while estimating the value of 
goods and services. For profit analyses that examine multiple years, the value of future 
profits must be properly discounted. Simply put, a dollar today is worth more than a dollar 
tomorrow. 

16. The discount rate to assess costs to the country should be the social discount rate 
normally used by the government. In contrast, the discount rate to estimate the costs and 
benefits to individual groups should reflect their rate of time preference. If the costs to all 
individual groups (including the government) were added up and re-calculated based on 
social value of resources rather than observed prices, they should equal the costs to the 
country. In other words, the costs to the government and the individual groups determines 
the overall costs to the country. 

17. From a national perspective, the discount rate can be equated to the cost of borrowing 
money. The interest rate on loans (often between 5 and 10% annually) is a useful proxy. 
From an individual perspective, the costs of borrowing money are typically much higher. 
Interest rates in countries often range between 10 and 30% per year,  or higher, if loans are 
available. For the purposes of opportunity cost analysis, the real interest rate should be 
used. How to deal with inflation is discussed below. 
 

Box 6.2. Understanding the potentially big effect of discount rates  
In many developing countries, interest rates are high, reflecting perhaps unstable economic 
conditions or the inherent risk of loans not being repaid. Nevertheless, strong criticism 
arises from employing the use of high discount rates. Within a NPV analysis, the chosen 
discount rate can have strong effects. This is a result of compounding, where the 
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discounting includes the cumulative effect of all previous years. For example, at a 10% 
discount rate, NPV of profits at the end of the first year (t=1) are valued 9.09% less. At the 
end of year 2, the profits are valued 17.4% less. In other words, to account for the time 
value of money, the profits would need to increase by these discounted amounts in order 
for the future profits to be of the same value. 

When a discount rate is applied over a long time horizon (15+ years), the NPV profits in the 
final years can be dramatically lower. The effects a 2, 5, 10, 15 and 20% discount rate are 
depicted below. At a 2% discount rate, the NPV profits in year 20 “lose” over 32% of their 
value (nearly 45% at year 30). At a 5% discount rate, the NPV profits in year 20 “lose” over 
62% of their value (nearly 77% at year 30).  

At higher discount rates, the effects are more severe. Use of a 15% discount rate implies 
that the NPV profit in year 20 have lost 93% of their value (in year 30, over 98%). With 
20% discount rate, the year 20 NPV profit is down approximately 97% (in year 30, down 
over 99%).  

  
Effect of discounting on future values (2, 10, 20%) 
 Source: Authors. 
 

 

How to estimate unstable and non-existent prices? 
How to value inputs provided and outputs consumed by the household? 
18. Especially with smallholder farms, labor inputs or inputs retained from previous 
harvests (e.g., seeds, manure, etc.) are often used within a farm and are not purchased. 
Therefore, the prices of such inputs may not be readily available. Smallholder farm 
households also may consume much of their harvests instead of selling them. Such 
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subsistence or semi-subsistence agriculture is common in many rural regions. While the 
earnings are not realized, the value of the output should be recognized at its market price. 

19. In addition, some farm inputs may have multiple possible prices (e.g., seeds retained 
from harvest could be valued at the forgone income at time of harvest, or the cost at time of 
planting). It is recommended to use the cost that farmers actually incur for such inputs. In 
the case of seed, the cost of storing seed may be minimal, therefore the seed should be 
valued at the time of harvest.  

20. Although such non-market inputs can be valued in different ways, be done justifiably, 
and produce different results, it is important to document the assumptions and methods. 
Sensitivity analysis of the assumptions can be conducted to see the impact of an 
assumption upon results of the analysis. With such an analysis and review, the difference 
may turn out to be rather either insignificant or worthy of discussion amongst peers to 
decide the best, most relevant, option. 

How to handle prices and yields that are highly variable over time? 
21. Agricultural production and product prices can be notoriously unstable. When 
collecting data at one point in time, it is likely that the information is not representative of 
yields and prices over a span of many years. Two basic types of variation exist (and their 
causes):  

1. Prices and yields vary around a static mean (e.g., because of variable weather 
conditions, pest and disease outbreaks, exchange rate fluctuations), and  

2. Prices and yields vary around a changing (trending) mean (e.g., mean yields 
decline because of soil degradation; real prices trend up because of increased 
consumer demand, energy costs; prices trend down because of demand shifts 
away for particular commodities or increasing supply associated with 
productivity growth).  

22. It is therefore recommended that price information be examined over multiple years 
and the context of agricultural productivity and markets be examined. Past trends can 
provide us with important information on how parameters of profitability analyses may 
develop in future years. For example, yields and input use of agricultural enterprises often 
increase gradually over time as technology improves. Meanwhile, yields can decrease 
resulting from soil degradation.  

23. Prices may also be subject to both positive and negative trends depending on 
population and economic growth at local, national, and global levels. While trends do not 
usually increase uncertainty, they can nevertheless lead to significant biases in opportunity 
cost estimations, especially if longer time REDD+ contracts are at stake. If there is 
reasonable evidence to expect major trends in key enterprise budget items, these items 
need to be adjusted accordingly for each year within the planning horizon. A gradual 
adoption of pest resistant corn varieties, for example, can be introduced in the analysis by 
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slowly increasing yields and reducing pesticide expenses in the corn enterprise budget 
according to the expected trends in these parameters. Uncertainty and associated risk of 
parameter estimates can by analyzed using stochastic analysis (Box 6.4). 

 

Box 6.3. Risk and uncertainty analysis 
Numerous computer programs are available to analyze the effects of risk and uncertainty 
(e.g., @Risk, Quametec, etc.). Using stochastic analysis methods within an Microsoft Excel 
spreadsheet, the programs can reveal the likelihood of a particular outcome given 
uncertainty of multiple parameter. Such analyses help decision makers to better 
understand the potential implications of interventions within uncertain environments.  
 

24. All parameters used in profitability analysis are subject to uncertainty as a result of 
data collection and processing errors. District averages of yields, for example, often 
overestimate actual yields (aggregation bias53), and information from field surveys may be 
subject to recall biases. In addition, survey respondents tend to generalize based on recent 
year experiences. To aid practitioners in understanding the process of assembling land use 
budgets, the accompanying spreadsheet workbook contains numerous notes. Sensitivity 
analysis of results can help analysts identify the most reasonable assumptions. 

Profits are calculated in terms of what? 
25. Profits can be measured in terms of time (e.g., workday or salary) or in terms of 
returns to land (i.e. $/ha). Within REDD+ opportunity analysis, returns to land typically 
makes most sense. Moreover, it is a common measure understood by many.  

Should the cost of land be included in calculations?  
26. Including land costs in the analysis only makes sense from the perspective of an 
investor who is considering acquiring land (through purchase or rental) to undertake an 
activity. For a farmer or logging company that already owns/controls the land, the analysis 
considers the returns to the next-best land use alternative. Therefore, the opportunity cost 
of land is already being taken into consideration. In other words, since the profitability of 
activity A to activity B is being compared, it makes little sense to include costs of land in 
profitability estimates, since the costs cancel out. For example, investments to improve 
profitability, and the value of land, are accounted for within a multi-year analysis.  

And labor? 
27. A more difficult question is whether profitability should be estimated in terms of 
returns to labor (i.e. $/workday). For many smallholder farm households, it could make 
                                                        
53 Resulting from assuming relationships observed for groups necessarily hold for individuals. For forest 
margin areas, lower yields can be masked if average values include areas with higher inputs and productivity. 
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more sense to express results both in terms of return to land and family labor. Especially in 
forest frontier regions, labor and capital are limiting factors of production. Since land is 
relatively abundant, smallholder farmers most carefully allocate their scarce labor 
resources (along with their land and capital resources).  

28. Opportunity costs of REDD are nevertheless calculated in terms land. Fortunately, it is 
possible to impute the value of family labor in the farm activity costs, thus giving 
profitability in terms of returns to land. Since family labor can be reallocated to other uses 
if a different land use is chosen, the returns to land can be a relevant measure of the 
opportunity cost of land use change.  

29. From the perspective of an individual, household income from a given land use is a 
relevant measure. This includes both profits and the implicit wage of their labor. REDD+ 
opportunity costs need to account for both the profits and implicit wages. Both types of 
earnings are forgone with REDD+. 

Which profits from a land use should be analyzed? 
30. A profitability analysis starts with developing detailed budgets of simple activities 
(also called enterprises) within land uses. These budgets are a summary of cost and 
revenue information. Enterprise budgets typically describe the activities that occur within 
a planting and harvest season. Examples of enterprises include NTFP collection, timber 
harvesting, and annual crops. Enterprise budgets of multi-year crops (e.g., cassava), animal 
production, perennial tree crops (e.g., cocoa, oilpalm, coffee, etc.) require accounting of 
multiple years that represent all phases of an enterprise: preparation/investment, 
maintenance, harvest and post-harvest activities on-farm. Enterprise budgets are an 
important building block to represent land uses and land use trajectories.  

31. Budgets of land use systems can account for a combination of activities, such as 
agricultural and tree crops. These budgets are also multiple year summaries representing 
all phases of an activity: preparation, maintenance, harvest and, perhaps, fallow periods.  

32. A budget of a land use trajectory is a longer-term summary of land uses and land use 
changes. Land use trajectories are developed as a basis for REDD+ opportunity cost 
estimates and analysis. Table 6.1 summarizes the three types of budgets and associated 
sources of information. 
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Table 6.1. Types of budgets  
Type of budget Description Data sources 

1. Land activity/ 
enterprise 

A single year summary of costs and revenues 
from a single activity. 
Forest conversion, forest harvests, agriculture 
& ranching activities within land use changes 

Local experts 

2. Land use 
system 

A multi-year summary of a single enterprise 
or linked enterprises of a land use  
Land use change cycles and transitions 

Local experts 

3. Land use 
trajectory 

A summary of different land uses starting 
from current use. The basis for opportunity 
cost estimates. 

Local experts, 
literature, remote 
sensing 

Source: Authors 

 

33. With land use trajectories, a profitability analysis often represents different groups or 
individuals who are responsible for different portions of the trajectory. For example, 
logging companies for forest degradation, settlers for deforestation and slash-and-burn 
agriculture. Although these changes make no difference to an analysis from the country's 
perspective, it can be very important when the analysis is from the perspective of an 
individual group. Adequate and proper compensation for REDD+ depends on such 
knowledge of land use changes. 

What to do when profits differ across sub-national regions? 
34. The distribution of profits for a particular land use within a country can be highly 
variable. Consider cocoa land uses, a principal driver of deforestation and degradation that 
occupies more than 8 million ha in the Guinea rainforests of West Africa, coastal Atlantic 
rainforests of Brazil, rainforests on the Indonesian island of Sulawesi, and other areas.   

35. Wide differences exist between the harvest yields of cocoa producers (Figure 6.1). In 
Ghana, the distribution of yields from nearly 5,000 producers show that the mean is more 
than 100 kg/ha greater than the median. Causes include significant differences fertilizer 
uses, and management practices.  Thus although cocoa systems can be considered a land 
use system within an opportunity cost analysis, examination of yields and causes of 
differences is essential to improve the accuracy and precision of profit estimates.  
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Figure 6.1. Cocoa: harvest yields per ha, Ghana  
Source: 2001/2 Sustainable Tree Crops Program, baseline survey (IITA, unpublished data). 

 

36. Within the forest sector, timber prices and previous harvests often affect forest profit 
levels (and opportunity costs).  In Brazil, for example, large amounts of timber have been 
harvested. Figure 6.1 is a provincial scale map of a forest logging history. 

 
Figure 6.2. A geographic assessment of logging history (Para, Brazil) 
Source: Souza Jr, et al. 2000. 
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37. Although a forest inventory provides an assessment of available timber and timber 
already harvested, analysis of current and future logging activities can be conducted per 
geographic region, thereby revealing profit potentials. Within Para, four areas of logging 
activity have been identified: Central, Estuarine, East and West (Figure 6.2). 

 
Figure 6.3 Logging regions within Para, Brazil. 
Source: Verissimo, et al. 2002. 

 

38. The location of a logging operation affects not only the amount and quality of available 
timber but also prices received. The figure below shows how timber quality of estuarine 
regions are of overall lower quality. The western region contains a higher percent of high 
and medium quality timber. 

 
Figure 6.4 Regional estimates of timber quality (% timber; Brazil, 1998) 
Source: Verissimo, et al. 2002. 
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39. Prices received for timber differ per quality category and, to a lesser extent, logging 
region. The price differential between high and medium quality is significantly greater than 
the difference between medium and low quality timber. The price of high value timber is 
approximately 2½ times more than prices of medium and low quality timber. 

 

 
Figure 6.5 Price of sawn timber per region and quality grade (US$/m3; Brazil, 2001) 
Source: Verissimo, et al. 2002. 

 
40. Therefore, at a national level, different budgets should be developed to adequately 
represent the differences within land use systems. 

 

Enterprise budgets 
Components and construction 
Enterprise budgets estimate profit (Π) in local currency per hectare ($/ha): 
 

cpq −=Π  
Where: p = price ($/ton), q = yield (ton/ha), and c = costs ($/ha) 
 

41. Revenues (pq) come from the output (e.g., crop, animals, timber) of a land use activity. 
Costs (c) arise from the use of two types of inputs: physical (or capital) and labor. These 
measures serve as adjustable parameters for subsequent scenario, sensitivity and tradeoff 
analyses.54 A sample enterprise budget is presented in Table 6.2. For more detail on 
enterprise budgets, see Gittinger (1982). 

                                                        
54 A parameter is a specific value of variable estimated or selected (e.g., mean, median) within an analysis.  
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42. Physical inputs include seeds, fertilizers and chemicals, which are typically used 
annually. Longer-term investments such as fences, tools, machinery, animals (cattle), etc. 
are also physical inputs.  

43. Labor inputs can be estimated using wage rates. Two types of rate, however, are 
typical: legal minimum wage and actual wage. Nationally-established minimum wages may 
include social benefits: health and pension. In contrast, actual wages are often significantly 
lower, especially in remote forest frontier areas. Actual wages should be used. Effects of 
different wage rates on opportunity cost estimates can be examined with sensitivity 
analyses.  

44. A monthly labor calendar is helpful to identify, discuss and quantify workday activities 
in order to estimate total labor input. Labor activity may be valued at a single wage or a 
different wage rate, depending on skills required or scarcity of seasonal labor. The first task 
of the agricultural/logging season, typically land preparation, should determine the 
starting month of the calendar. The labor calendar can be differentiated between hired and 
family labor, and also by gender. This enables analysts to examine the potential social 
effects of REDD+ policies. 

 

Table 6.2. A sample enterprise budget 
Rice    (per hectare)        
Profit           
Total Input 
Costs      

Total 
Revenues     

Product Quantity  Price Cost Units  Harvest Price    
Seed            
Fertilizer           
Machinery           
Tools           
           
Labor Activity Workdays Wage         
Preparation           
Planting           
Weeding           
Harvest           
Threshing           
Transport            
Calendar: Workdays          
Activity Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total  
Preparation            
Planting            
Weeding            
Harvest            
Post-harv. 
process            
Transport            
Total              
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45. Careful consideration of the units of analysis within budgets is essential. Units of 
measure, such as kg, liters, tons, should be noted. Local measurement units of land area and 
harvest weights can be used in order to facilitate discussion with farmers. Conversion to 
metric measures (e.g., hectares, kilograms), however, are needed to enable a standardized 
analysis. 

46. While yields can be converted to required per hectare units, cost information may 
come in different units, e.g., workdays per ton of product harvested and thus require 
conversion to a land-based measure. If farm inputs are used for more than one enterprise, 
the cost of input should be shared and attributed to the other enterprises. For example, 
rental rates per hectare or day are convenient approximations for the use cost of tools and 
machinery (e.g., chain saws, machetes, machinery, etc.). Alternatively, prices and average 
lifetime values can be estimated to impute annual use cost per hectare.  

47. Numerous methodological and data assumptions underlie the information within 
enterprise budgets. Parameters (e.g., of inputs, harvest yields and prices) can easily be 
adjusted to represent specific locations and contexts. Consequently, notes regarding 
contexts and assumptions are helpful to understand the accuracy and assure the relevance 
of budget information. 

Data collection 
48. The data needed to develop enterprise budgets can come from a variety of sources. 
Since budget information is basic to analyses of agriculture, ranching and logging activities, 
national research centers and universities may have budgets already available. If not, 
production data can be collected via interviews with farmers, or other experts (e.g., 
agronomists, extensionists, foresters) and via literature review of case study analyses of 
production systems.  

49. Detailed secondary information on inputs (e.g., workdays, prices) is rarely readily 
available. Essential to estimating costs, accurate data on enterprise inputs is best obtained 
via farmer and key informant interviews. Given budgetary or time restrictions, precise 
measures for some items within an enterprise budget may not possible. In order to quickly 
advance analyses, estimated measures can be used, based on expert opinion and other 
sources. In addition, information from other budgets and studies can be used in an IPCC 
Tier 1 or Tier 2 manner and adjusted to local conditions. 

50. Budgets should be developed in local domestic currency. As estimates in domestic 
currency are typically less vulnerable to exchange rate fluctuations,55 any database should 
be expressed and maintained in domestic currency. Conversion to foreign currency can be 
accomplished for specific purposes when needed. For example, at some later point 
                                                        
55 Prices of internationally-traded commodities such as cocoa or palm oil, may be less volatile.  
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countries will need to know how their REDD+ opportunity costs compare to possible 
REDD+ payments, which will be stated in US$/tCO2e or other such terms. For this particular 
purpose, countries will need to convert results to US$ or €. 

51. Budgets collected through field surveys can avoid most of these problems but are 
much more expensive to collect. The accuracy and reliability of budgets also depends on 
appropriate sample design and enumerators being well-trained. Pre-testing of 
questionnaires with focus groups along with a review and critique of responses can help 
assure the collection of all needed information. Where areas are relatively homogeneous, 
focus group interactions instead of wide-scale surveys can provide better information. 
Focus groups permit the acquistion of in-depth information and beneficial dialogue in 
comparison with surveys, which typically extract rather repeative basic information.  

52. It is important to note that budgets developed through interviews can only obtain 
reliable data for the current and recent years. Data obtained while attempting to remember 
earlier years can be very inaccurate. In addition, when yields and prices are very variable, 
official budgets can also be very unreliable. Therefore, comparison and discussion of official 
government information, farmer responses and expert opinion are helpful to identify the 
most appropriate budgetary information.  

53. Interviews are difficult when the activities concerned are illegal (e.g., logging, 
bushmeat trade, coca production). By enhancing trust and assuring anonymity of 
responses, required information can often be obtained. Working through social networks 
of families, friends and co-worker can also facilitate the data collection process. 

54. Table 6.3 summarizes the advantages and disadvantages of different data collection 
approaches. For details on data collection methods, see Holmes, et al. (1999), FAO (2001, 
2002), and Pokorny and Steinbrenner (2005).  
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Table 6.3. Advantages and disadvantages of data collection approaches 

Method  Advantages  Disadvantages 
Survey   
(in-person) 

-Expert-based 
-Timely 
-Comprehensive, large sample size 
can increase statistical 
significance of results. 

-Follow-up questions require second 
communication 
-Expensive for large sample 
-Proper training of interviewers/ 
enumerators essential. 

Case Study  -Close discussion with land user 
-Broader questions 
-In-depth questions and answers 
possible. 

-Dependence on secondary information and 
knowledge by personnel 
-Limited representativity. 

Experiment 
station 

-Control over data quality 
-Allows for the testing of alternate 
scenarios and ideas. 

-Higher yields than field conditions 
- Limited validity of extrapolation 
-Specific individual results 

Existing 
sources 

-Cheap to collect 
-Data already processed. 

-Results may not contain information needed 
-Results may reflect “average” conditions that 
do not represent any actual farmer 
-Information may be out-of-date 
-Results may be of "best case” yields, 
especially for crops of interest to the 
ministry/project, and rarely achieved in 
practice, 
-Results show input use that reflects 
recommended rather than actual practice, 
-Methods use official rather than observed 
prices, 
-Methods may be based on hidden 
assumptions. 

Adapted from: Pokorny and Steinbrenner (2005);Pagiola (personal communication, 2010). 
 

55. Given the challenges mentioned above, many estimates within enterprise budgets will 
likely be imperfect. A systematic approach to data collection with notes on context and 
assumptions enables the process to be transparent, reviewed, revised and improved. For 
example, price data may be affected by market distortions, as a result of government 
subsidies, sales taxes or minimum price policies. Sensitivity analysis of changes in 
parameters is a useful way to understand how much an estimate affects the final results of 
an opportunity cost and tradeoff analysis (discussed in Chapter 7). 

56. The following section is divided into two parts to address particular data aspects of 
(1) agriculture/ranching, and (2) forest land uses.  

Agriculture and ranching 
57. Farmers can usually recall yields prices paid and received for the most recent season. 
In the absence of farm gate prices, other price data should be adjusted based on value-
added marketing activities. For example, wholesale market prices of rice include the added 
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value of milling and farm-to-market transportation costs. If market prices are used, the cost 
of milling and transport should be subtracted in order to arrive at farm gate prices.  

58. Agricultural census and government statistical information at provincial or 
department level can confirm yield estimates. With estimates of total crop area, such sub-
national production figures can be converted to a per hectare basis. Even if farm-level data 
is used within the analysis, government census statistical information is helpful to check 
data accuracy.  

59. On smallholder farms, many separate activities often occur in within a small patch of 
land. Slash-and-burn systems typically include a wide range of agricultural crops including 
rice, maize, beans, cassava, plantain, etc. To represent slash-and-burn agriculture in Peru 
for example, a rice-plantain-fallow cycle, which is common to the region, is used. The cycle 
can be adjusted according to age of forest frontier by changing the length of the fallow 
period. Similarly, pasture productivity is adjustable according to animal units (head of 
cattle per ha). 

60. Since remote detection of individual crops is notoriously difficult, a subset of the 
major activities can be selected to represent a mixed land use, thereby reducing the need 
for detailed data collection. Similarly the productivity of pastures within a landscape is not 
possible to assess without on-site information. 

61. Smallholder practitioners of slash-and-burn farming rarely have precise measures of 
their field size.  This is particularly common in regions where land markets and land titling 
are not developed. In such cases, accurate estimates of field size may be obtained by 
walking the field perimeter with a handheld GPS.  

62. Markets may not exist or function well in remote regions. For example, services such 
as wage labor could simply be unavailable for purchase. Since minimum wage rates are 
often poor approximations of actual rural wage rates, analysts are best advised to  consult 
local experts about realistic wage rates. Even in remote areas, the hiring of casual workers 
is common. The daily wage is often quite standardized and known within a given locality.  
Since minimum wage rates are often poor approximations of actual rural wage rates, 
analysts are best advised to consult local experts about realistic wage rates. 

63. Alternatively, hired laborers are commonly paid on a piece-rate rather than a monthly, 
daily or hourly wage basis. This complicates wage rate sensitivity analysis as this labor cost 
is a lump sum payment and therefore requires a data transformation. Perhaps the simplest 
way is to divide the lump sum payment by the wage rate to estimate the equivalent 
quantity of wage labor that could have been employed. Sharecropping is another labor 
institution common to smallholder agriculture in developing countries that requires a 
similar treatment.   
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Forests 

Timber 
64. Since the logging industry is highly competitive and under the scrutiny of tax officials, 
acquiring financial information can be particularly difficult. In addition, most timber 
extraction (around 90%) in the Amazon is estimated to be illegal (Stone, 1998). Operations 
are often led by self-made managers who have little business management training, 
deficient bookkeeping practices, and limited financial control of forest operations (Arima 
and Veríssimo, 2002, Pearce, et al. 2003). Nevertheless, personal interviews, mail surveys 
and informal discussions with industry experts may provide needed information.  

Other forest products 
65. Data collection methods for non-timber forest products (NTFPs) appear in numerous 
studies. Sheil and Wunder (2002) provide a useful critique of methods applied. For 
charcoal products, few studies exist; examples include: Hofstad (1997), Coomes and Burt 
(2001) and Labarta, et al. (2008). 

 

Land use budgets 
66. Information from enterprise budgets is essential to estimating the profitability of land 
uses and land use trajectories. For land uses with more than one product, land use budgets 
require managing revenue and cost information of separate enterprise budgets. Thus the  
representation of profit is: 
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67. The above equation makes explicit not only the prices and multiple market goods and 
services of a land use, (ph and qh) but also the non-market prices (pi) of non-market goods 
and services (qi). Within a specific land use, the inputs may include both marketed inputs 
(yj) and non-marketed inputs (yk), which have distinct valuation challenges (of ck). The use 
of shadow prices for non-marketed goods is common. 

68. The enterprise budget example for rice above is a single year. Land uses, however, 
typically require a multi-year analysis, since annual profit levels can be very different 
(negative, zero or positive) depending on phase: establishment, fallow or production. 
Therefore, the above equation becomes: 
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69. The file SpreadsheetExercisesREDDplusOppCosts.xlsm (available on the manual 
website) contains examples of land use budgets with different phases and products. Such 
detailed budgets help analysts keep track of individual activities and enterprises as they 
change over time. Notes on how the costs and earnings change help analysts understand 
the assumptions employed and site context.  

70. For some land uses, complementary activities should be noted, if not included in 
estimates. For example, fodder production for feeding animals that provide transport or 
other farm activities, such as plowing, should be attributed a proportional use basis. Details 
of such assumptions are discussed at the end of the chapter.  

Agriculture 
71. Land use budgets can be developed to represent both land use change cycles and 
transitions (see Chapter 3 for definitions). Distinct versions of land use budgets can 
different locations and context, such as within a forest frontier. For example in Peru, 
swidden agricultural production typically has a three year production phase, but different 
fallow periods according to age of settlement. Farmers in established settlements with 
higher population pressure commonly practice shorter “bush” fallows of 2-6 years. In 
contrast, pioneer farmers typically leave their lands  fallow for longer periods, 6-15 years. 
Since both input (e.g., labor) and output (e.g., harvest) levels are different between such 
systems, separate budgets are justified.  

72. Land use budgets of perennial systems, such as tree crops (cocoa, oil palm) and cattle, 
include costs of establishment and production. These multi-year budgets could typically 
have high investment costs and require numerous years before revenues exceed costs. 

73. The workbook of land uses contains example spreadsheets of cocoa, oil palm, cattle, 
rice-plantain systems. Cells, highlighted in yellow, represent parameters that can be 
adjusted to better represent local conditions. Different contexts and land management 
practices should be examined within scenario analyses of land use trajectories. 
Adjustments of parameters such as yields could include harvest increases that represent 
new seed and fertilizers or harvest decreases resulting from land degradation. In addition, 
ash flow constraints (especially with cattle and perennial systems) may require land uses 
to be phased in as funds become available. 
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Forests 
Timber 
74. Forest harvest operations are typically diverse, ranging from small-scale informal 
loggers to vertically-integrated harvest, transport and processing firms. Therefore, 
different budgets for timber harvests are needed for each major variation that is observed 
in a country. 

75. Timber cost analyses are typically divided according process stage: timber harvest, 
transportation and milling. Harvesting comprises a set of activities undertaken to fell and 
extract trees to a landing or a roadside where they are processed into logs and 
consolidated. Logs are then transported over unpaved and paved roads to a processing 
facility or other final destination. Milling refers to log sawing activities into a variety of 
different shapes and dimensions. The spreadsheet named Timber is an example of an 
enterprise budget for logging company. The level of detail can be expanded per process 
stage, by including estimates for the costs of labor and equipment, for example. For a 
comprehensive explanation of costing procedures, see Holmes, et al. (1999). 

76. Forests can generate substantial profits or losses. Whether the profits are positive or 
negative, depend upon how forests are used and if products are sold. To understand the 
variety of forest uses and products, two aspects of forests need to be considered: forest 
quality and forest use.  

77. Forest quality refers to the status of the forest with respect to previous use by people. 
Many relatively dense forests have already undergone a series of changes, including 
extractions of high-value tree species and selective logging. Hence, forest quality is also a 
measure of forest degradation.56  

78. While degraded forests can still be forests, according to definition, the carbon content 
and future profits can be substantially different from natural forests. A previously-
harvested forest, for example, will not generate the same profits as a pristine forest. In 
order to enable a rigorous accounting of forests, distinct forest quality categories need to 
be developed. For the purposes of this training manual, general categories are employed, 
consisting of: pristine or natural, selectively cut (highest value species extracted), and 
partially cut (high-mid value species harvested). In order to obtain more precise estimates 
of forest profitability, sub-categories with greater levels of distinction and detail may be 
required per country context and REDD+ program criteria. 

79. Past activities will affect future potential uses of the forest. Thus, in contrast to forest 
quality, forest use refers to upcoming activities within a forest. For example, pristine or 

                                                        
56 Although specific definitions of forest quality (e.g., carbon content and canopy cover) will likely differ 
according to national contexts and perhaps differ within a country. Forest categories and their geographic 
identification can be linked with  land uses discussion. 
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natural forests have had few human activities but a wide range of potential uses. 
Respective select- and partially- cut forests have increasing levels of previous use, yet 
fewer potential uses. Fewer potential uses implies lower profitability. Per forest quality 
category, Table 6.4 summarizes both previous and potential forest uses. 

 
Table 6.4. Past and potential forest uses per status of forest quality 

Forest 
quality status 

Past uses Potential future uses 

Pristine or 
natural 

NTFPs 
Tourism 
 

NTFPs 
Tourism  
Highest-value trees extracted 
High-mid value tree harvests 
Forest conversion (timber, charcoal) 
Other land uses (agriculture, ranching) 

Selectively  cut  

Highest-value trees extracted 
NTFPs 
Tourism 

NTFPs 
Tourism 
High-mid value tree harvests 
Forest conversion (timber, charcoal, 
pulpwood) 
Other land uses (agriculture, ranching) 

Partially cut  
Highest-value trees extracted 
High-mid value trees harvested 
NTFPs* 

NTFPs 
Forest conversion (timber, charcoal, 
pulpwood) 
Other land uses (agriculture, ranching) 

* can also include areas of slash-and-burn agriculture, depending on land use definitions and resolution 
of analysis. 
Source: Authors. 

 
80. Forest quality also determines possible timber harvests. Select cut- or partial- timber 
harvests, for example, decrease carbon content and potential near-term future profits, 
albeit less than clear cutting. While selective forest harvest practices may not cause a land 
parcel to lose its distinction as a forest, their effects on carbon and potential future 
profitability need to be assessed.57 For example, after thinning (e.g., selective harvest) 
remaining trees grow faster. 

81. Often used to describe forest use are the words sustainable and unsustainable. For 
the purposes of estimating REDD+ opportunity costs, however, the distinction is not 
sufficiently precise. Sustainable use activities, such as from non-timber forest products 
(NTFPs) or tourism, do not affect the carbon content and forest quality. Yet, other 
“sustainable” practices, such as sustainable forest management, are likely to reduce carbon 
content and forest quality - although less than conventional logging practices.  
                                                        
57 The opportunity costs of conserving selectively logged forests can be substantially lower and thus more 
affordable from a REDD+ point of view. “Log and protect” might thus become a way to avoid substantial 
emissions. 
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82. Profits from forests can also be generated in other ways. A lesser-known forest use 
and income source is the production and sale of charcoal, which is used as a cooking fuel. 
As an enterprise activity of a smallholder farmer, for example, charcoal production in the 
Peruvian Amazon can generate substantial earnings. A whole-farm profitability analysis 
estimates that charcoal-producing farmers generate 17% higher net income from their 
farm than merely slashing and burning the forest (Labarta et al. 2007).  

83. When trees are not sold, forest conversion costs are not offset by income, thereby 
causing sometime substantial profit losses in the initial year. Especially in remote areas, 
many farmers, prefer to burn trees on-site since expensive transportation often erases 
potential earnings. In such cases, the cost of clearing land typically exceeds the initial years 
of revenue generated from agriculture or pasture activities (Kotto-Same, et al., 2001; 
Merry, et al. 2001; White, et al. 2005).58 

84. Experiences from Brazil, the largest timber producing country in the tropics, and Peru 
are used to illustrate costs and revenues from the timber industry. Cost studies examined 
the entire sequence of activities related to forest operations, including cutting, skidding, 
landing activities, and transportation. Also included were costs for construction and 
maintenance of infrastructure (landings, and primary and secondary roads) and the costs 
for capital items (e.g., capital costs, depreciation, maintenance), labor, material, 
administration, and stumpage fees.59 Most studies took into account transportation costs 
from the forest site to the sawmill along public roads, whereas costs representing risks and 
administration salaries were largely ignored. Some studies used standard costs for labor 
and machinery, while others relied on data specific to the different activities.  

85. Studies of logging operations provide numerous cost and revenue estimates. Profit 
estimates show significant variation – ranging from US$24/ha to US$1435/ha (Olsen & 
Bishop, 2009). In reviews of forest operation studies, Pokorny and Steinbrenner (2005) 
and Bauch, et al. (2007) found that differences in cost estimates arose from contextual 
conditions of: 

• particular forests (e.g., species composition, forest structure, topography),  
• commercial enterprises (e.g., staff, machinery, work processes, organization, 

wage rates),  
• harvesting strategy  

o conventional logging (CL) and reduced impact logging (RIL) practices. 
(See Box 6.5) for a description of the logging techniques and cost  

o distance from the forest to the processing location 
• cost calculation methods (overall costs versus specific sub-activity), and  

                                                        
58 Although trees can used for many local uses, their estimated value is relatively small and therefore not 
included in an analysis of profits. 
59 Stumpage fees are the cost of purchasing the rights to log a parcel of land. Payment is typically made on a 
m3 basis. Such fees are a component of opportunity cost of logging - the value of the trees to the landowner.  
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• approaches used for data collection.  
 
86. The conversion rate from logs to sawn timber is a useful factor to contrast efficiency 
(and profitability) of timber harvest operations. Stone (1990) considers a conversion rate 
of 47% while Stone (1995) considered a conversion rate of 34%.60  

 
Box 6.4. Reduced impact logging 
Reduced impact logging (RIL) can be more profitable than conventional logging (CL) 
practices. Despite requiring investments, RIL can accrue benefits in the both short and 
longer term. At an initial harvest, forest worker training generates efficiency gains to 
skidding, recovery of potential marketable timber and log deck61 productivity. Longer term 
economic and ecological benefits of RIL include less damage to residual trees and disturbed 
soils (Holmes, et al. 1999). 

In a case study analysis, wood wasted in the CL practices represented about 24% of the 
harvest volume, but only 7.6% with RIL techniques. Less wood wasted and increased wood 
volume can reduce costs by 12% per cubic meter versus a typical CL operation (Holmes, et 
al. 1999).  

The FAO model code of forest harvesting provides the basis for RIL system design, 
including many or all of the following activities: pre-harvest inventory and mapping of 
trees, pre-harvest planning of roads and skidtrails, pre-harvest vine cutting (where 
needed), directional felling, low stump cuts, efficient use of felled trunks, optimum width of 
roads and skid trails, winching of logs to planned skid trails, optimal size of landings, 
minimal ground disturbance and slash management (Dykstra and Heinrich 1996).  

 

 
  

Ground area disturbed by CL and RIL (m2 per tree harvested and % area)  
Source: Holmes, et al. 1999. 
 

Although RIL is not a fixed prescription, the techniques and guidelines attempt to adapt 
best harvesting practices to existing biophysical and economic conditions. Pre-harvest, 
                                                        
60 The revised rate, reflecting less efficiency is one of the main factors behind Stone’s conclusion that timber 
profits are decreasing (Bauch, 2010, personal communication). 
61 Location to where logs are skidded stacked for subsequent loading onto trucks. 
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harvest planning and infrastructure costs of CL operations were $0.71 per m3 and $1.93 
per m3 for RIL. In some cases, RIL can be more expensive or of similar cost to CL depending 
on sophistication of the CL (e.g., harvest planning) and particular practices of RIL (Winkler, 
1997; van der Hout, 1999). Effects of RIL on carbon density stock and regeneration 
capacity of the remaining have not yet been estimated.  Nevertheless, the REDD+ 
opportunity costs of different forest management strategies can be examined through 
sensitivity and scenario analyses. 
 

87. Timber waste is a concept related to conversion rate.  Timber waste arises from felled 
logs not being skidded and young trees of commercial value being needlessly destroyed. In 
mills, waste is produced when logs degrade during storage and inaccurately sawn lumber 
(i.e. excessive thickness) (Gerwing, et al. 1996). According to Pokorny and Steinbrenner 
(2005), the multiple components of timber waste from field to mill, resulted in greater 
differences in the costs than single estimates of field productivity. 

88. Profit estimates of logging operations can also differ because of assumptions 
regarding timber quality and prices received. Since many forests within a country may 
have already been harvested, timber profits could substantially differ per region. An 
assessment of current forest quality and potential forest uses establishes a starting point of 
analysis for estimating future profits.   

89. The profits generated from high value forests can be substantial. A case of mahogany 
harvests in Brazil is an example of high profits with potentially low carbon impact (Box 
6.6).  

 
Box 6.5. High-value mahogany - but with what carbon effects? 
High value species extracted from forests generate large profits with relatively little effect 
on forest carbon. In Brazil, for example, mahogany trees are usually widely scattered in 
patches. On average, 5 m3 of mahogany logs are extracted per hectare and generate $81 per 
hectare in profit, despite their high ($150 per m3) harvesting costs (Verissimo, et al., 1995).  

While this type of forest impact may be small, associated harvest practices can have greater 
effects on forest quality. Most logging operations use conventional harvesting techniques, 
sometimes termed high impact, that severely damage and degrade forests. Skidder road 
construction and damage to other trees during felling can affect both carbon and forest 
canopy. Yet, such effects are not typically included in deforestation maps (Nepstad, et al., 
1999).  In addition, since only a portion of the tree is being harvested, a substantial amount 
of the biomass is not of commercial quality. The unused portion of the tree should to be 
considered within carbon accounts of forests. 

To assess selective logging, budgets should be estimated for the forest land with logging 
(and any subsequent land uses in the trajectory) and for the same forest land without such 
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logging. The profitabilities can be compared with differences in C stocks under the two land 
uses in order to estimate the REDD+ opportunity costs. 

 

Other forest products 
90. Estimates of profits generated from NTFPs also vary widely according to study 
methods, products gathered and economic context. In a meta- analysis of NTFP studies, 
Belcher, et al. (2005) estimated the value of three types of NTFP production (US$/ha): wild 
($1.8), managed ($3.8), and cultivated ($25.6). Costs of collection, especially labor inputs, 
are difficult to measure comprehensively and are not reported extensively in the literature. 
Although likely to be minor, corresponding levels of carbon in forest and the effect of 
gathering on carbon stocks were not examined. 

Reforestation  
91. Since the 2010 UNFCCC meetings in Cancun, the enhancement of forest C stocks has 
been included with REDD (thereby becoming REDD+). This implies, for example, REDD+ 
eligibility would include changes from: (1) a particular non-forest land use returning to 
forest, or (2) a degraded low-carbon forest to a forest with higher carbon content.  

Profitabilities of land use trajectories  
92. With land use budgets, we now have an analytical framework and sufficient 
information to analyze the profitability of land uses over many years. Where needed, the 
enterprise budgets have been combined into multiple year budgets representing a land use. 
Yet, since land uses can change over time and credits represent carbon contained in land 
uses for multiple years (specifics not decided yet within REDD+ policy), a profit analysis of 
land use trajectories is called for when estimating REDD+ opportunity costs. Although the 
length of the time horizon for analysis can be an arbitrary decision, it should be guided by 
REDD+ policy. Common analysis horizons range from 20 - 50 years, and perhaps more.62 
For the purposes of this manual, a 30-year horizon is used.  

93. Sample results of a profit analysis from Peru are summarized in Figure 6.6 and 
associated Table 6.5. For each land use change in the Peru case, profits in the first year are 
negative. This is due to the high investment costs of preparing the land for subsequent 
agricultural or tree production.63  

94. Profits also differ each year for most of the land uses. While not producing greater 
profits, agriculture and pasture systems generate profits earlier than tree-based systems. 

                                                        
62 The longest horizon of CDM project activities, other than Afforestation/Reforestation (A/R), is 21 years. For 
A/R activities, the time horizon is 20 to 60 years (UNFCCC, 2010). 
63 When timber can be sold, for example, first year profits are typically high. Likewise, first year profits can be 
positive when clearing costs are low (e.g., using burning with little slashing) and first crops are obtained 
quickly (annual crops). 
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In the Peru example, the agricultural systems are based on either short- and long- fallow 
systems, which produce positive profits in years two and three. During the fallow periods 
of 4 and 8 years, respectively, no costs or earnings result in zero profit.64   

95. With ranching land uses, although the initial costs of seeding pastures can be low, 
other establishment costs such as cattle purchases and fencing are high. The costs of 
establishing an improved pasture are greater than a native pasture, generating double the 
profits after year 1.  

96. The profits of perennial land uses depend on investments required to establish the 
system, intercropping activities and the number of years until production from the trees. 
The tree-based systems generate negative profits (losses) for one or two years, given that 
weeding and other investments are typically required before production.  

97. These sample results are highly sensitive to yield, price and input assumptions. 
Parameters, within the enterprise or land use budgets, can be adjusted to represent 
different socio-economic and biophysical contexts. The interconnected information enables 
rapid review of how parameter estimates affect profitability of a land use. More on the 
topic of sensitivity analysis, in Chapter 9.  

 

  
Figure 6.6. Sample multi-year profit analysis (undiscounted values, $/ha) 

 
 
 

 

                                                        
64 The rental rate of land is considered to be zero. Discussion on this assumption below. 
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 Table 6.5. A m
ulti-year profit analysis results, Peru (undiscounted; years 1-15, 30) 

Year 
1 

2 
3 

4 
5 
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7 
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13 

14 
15 
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Net present value 
98. The above multi-year profit analyses illustrate how profit levels change annually 
during a time horizon. Despite all the results, it is not easy to determine the most attractive 
land use with respect to overall profitability. A land use may generate the highest profits, 
but occur at the end of a time horizon.  

99. Net present value (NPV), or sometimes called present value, is a calculation commonly 
used to estimate the profitability of a land use over many years. NPV takes into account the 
time-value of money. Since waiting for profits is less desirable than obtaining profits now, 
the “value” of future profits is discounted by a specific percentage rate, often ranging from 
2- 20%.  

100. With multi-year analysis, NPV is a discounted stream of profits (revenues minus costs 
of capital, land and labor inputs).  

∑
= +

Π
=

T

t
t

t

r
NPV

1 )1(   

Where t = year, T = length of time horizon, Π = annual profits of the LU ($/ha), r = discount 
rate. The major assumptions introduced at the stage of NPV calculation are the discount 
rate (r) and the time horizon (T). 

Which discount rate should be used?  
101. For discount rates, NPV analyses typically use loan interest rates, which are set by a 
national bank or the government. Such rates can range from 10-30%. Although agricultural 
loans are rarely available, especially in remote forest margins regions, bank interest rates 
do serve as a good indicator of the time value of money.65 The interest rate reflects the 
opportunity cost of obtaining profits - not now - but in the future.  

102. High discount rates can dramatically reduce the viability and attractiveness of long-
term investments. These include enterprises such as forestry, agroforestry, and cattle 
systems where initial years require up-front investments and payoffs occur 5-20 years 
later. Costs are scarcely discounted, whereas the value of future earnings can be 
significantly lower. 

103. Another interpretation of the discounting effect from high rates is that future values 
do not matter. Since future profits are heavily discounted, they are not important. This can 
also be translated into saying that the benefits to future generations do not matter. The 
context of high discount rates creates incentives to generate profits and benefits in the 
short term, since waiting for the long term is nearly worthless. For example, the use of high 
                                                        
65 Furthermore, smallholder farmers rarely have title to their land or tangible assets to use for collateral to be 
able to borrow funds. 
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discount rates challenges the view of conservationists who consider current and future 
values of biodiversity to be high. Therefore, in order to value ecosystem services, a lower 
(social) discount rates could be more justifiable than higher discount rates used in a risky 
(private) business environment. 

104. In sum, it is important to select a discount rate the reflects the transaction within the 
market and policy context. REDD+ programs are not based on the context of smallholders 
conservationists or businesses. The national accounting system of a country is likely 
intermediate and appropriate financial context of a REDD+ program. Therefore, within this 
training manual a 5% discount rate is employed. To see how NPV can be calculated in 
computer spreadsheets, examine sheet 30-year analysis in the example workbook. The 
combination of enterprises that comprise each land use has been defined in 0. Now, in 
sheet NPV, a function within is used to calculate the NPV of the profit stream for each of the 
enterprises in a given LUT. The sensitivity of results to this assumption is examined in 
detail below and within 0. 

Results of profitability analysis 
105. Results of a sample profitability analysis are in Table 6.6. NPV estimates for the 30 
year timeframe and 5% discount rate range from $15 per ha for NTFP collection to $1047 
for a timber and improved pasture land use trajectory. The next lowest performing 
trajectory was traditional pasture. Low productivity and initial investment costs decrease 
the NPV estimates. In contrast, the inclusion of profits from either timber or charcoal sales 
significantly increases NPV estimates. Charcoal profits more than double the NPV of a rice-
plantain swidden system. Similarly, the NPV of an improved pasture system nearly doubles 
with the inclusion of profits from timber.66 

106. All these results are highly dependent upon yields, prices and cost of inputs. 
Adjustment to parameters of particular land uses can be made within the corresponding 
spreadsheets. 

107. Figure 6.7 show the discounted profit horizon of 30-year trajectory. In comparison to 
the undiscounted horizon, the discounted values during the latter years are closer to zero. 
This holds true for both positive and negative (investments) profits that occur in the 
distant future. 

 
 
 
 

                                                        
66 By law in Brazil, the minimum harvest cycle for tropical forests is 25 years. Although there no forest has 
been managed (and survived) for that long in order to be able to assess feasibility of another harvest in year 
25, NPV could be higher based on a 2nd harvest; see van Gardingen, et al., (2006) for forest regrowth models. 
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Table 6.6. Profitabilities of land use trajectories (5% discount rate, 30 year analysis) 

  
Source: Authors. 

 
 

 
Figure 6.7. Sample multi-year profit analysis (5% discounted values, $/ha)  
Source: Authors. 
 
 

Backend issues – more methods and assumptions  
108. Since the results of profitability analyses always depend on a series of assumptions 
(e.g., data sources or discount rate), results can and should be questioned.  It is therefore 
crucial to review profit estimates and the step taken to generate them. In this section, we 
revisit important elements of profitability analysis and discuss the implications of 
assumptions. 

How to handle shared and long-lasting inputs  
109. If farm inputs are used for more than one enterprise, the cost of input should be 
shared and attributed to the other enterprises. If the cost were to appear within the budget 
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of one enterprise, the profit would be incorrectly reduced while other activities become 
more profitable.  

110. To account for shared inputs, it is recommended to use rental rates per hectare or day 
to approximate the cost of tools and machinery (e.g., chain saws, machetes, tractors, etc.). 
For long-lasting inputs, prices and average lifetime values can be estimated to impute 
annual use cost per hectare. Analysis can also depreciate the value of the input according to 
a depreciation schedule (for details, see Gittinger, 1982). 

How to estimate budgets for hypothetical land uses  
111. Countries may want to estimate hypothetical land use practices within a profitability 
analysis. Some practices are not currently observed but may have higher carbon benefits 
than current practices (e.g., RIL). Also, other potentially new land uses might come about 
(e.g., biofuel production).  

112. When estimating hypothetical cases, extra caution should be taken. Often prospective 
budgets make unrealistic assumptions in order to obtain funds for research and 
implementation. Careful review of the literature about projected yields and associated 
costs savings are recommended. In addition, both the socio-economic and bio-physical 
conditions of case studies should be comparable to the proposed locations. 

How to account for inflation  
113. Estimates should be calculated in real terms. In other words, inflation is accounted for 
in the analyses, whereby the NPV analyses combines the discount rate with the inflation 
rate (Real Interest Rate = Nominal Interest Rate – Inflation). Analyses using real rates are 
important as they show the actual increase in value, and how much of a return was just the 
effect of inflation. 

Time horizon of a net present value analysis 
114. For NPV estimates to remain comparable across enterprises and land uses, the same 
time horizon must be used in all analyses. This manual uses a 30-year timeframe. As we are 
interested in the opportunity cost of entering a REDD+ contract, the choice of the time 
horizon may have important implications for buyers and sellers of emissions credits. If the 
time horizon for NPV calculation exceeds the respective REDD+ contract duration, 
opportunity costs may be overestimated and vice versa.  

115. The use of a higher discount rate and longer time horizon can help to improve the 
methodological consistency when estimating the land use profits. Since harvest cycles of 
different land uses are likely to have differing period lengths, discrepancies can result 
within a time horizon. For example, some land uses may end in the end or middle of a 
productive phase while other may be in a fallow stage. (Note that in Figure 4.6, the 
agriculture-fallow cycles are not complete within the time horizon.) Fortunately, the 
discount rate can cause the contribution of later year profits to be less significant.  
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116. If a short time horizon is used, then substantial residual values may arise for many 
land uses. Using a long time horizon can be easier (long enough that, under whatever 
discount rate is chosen, any benefits or losses beyond the time horizon no longer matter) 
than to use a short horizon and have to compute and enter residual values. 
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Chapter 7. Opportunity cost analysis  

Objectives 

Show how to: 
1. Generate an opportunity cost curve of REDD 
2. Review effect of changes in policy, prices and technical coefficients on an 

opportunity cost curve (sensitivity analysis) 
3. Create maps of opportunity costs 
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1. This chapter integrates the outputs from previous chapters. Here we combine 
different types of information about land use – land use change, carbon stocks, and 
profitability.  

Estimate opportunity costs 

2. An opportunity cost is a type of tradeoff. With REDD+, an opportunity cost is measure  
of a land use change expressed in terms of money and physical units - instead of only 
physical units, as tradeoffs are often compared. The opportunity costs of REDD+ are based 
on $ or € per ton CO2e.  

An opportunity cost curve 
3. A REDD+ opportunity cost curve is a comparison of the opportunity costs of many 
different types of land use change. The height represents opportunity cost of each land use 
change. The curve also shows the quantity of potential emissions reduction per type of land 
use change. This is the width of the respective segments.  

4. In a national “abatement curve” developed by Dewan Nasional Perubahan Iklim and 
McKinsey and Co. (Figure 7.1), which in fact is an opportunity cost curve (see Figure 1.6 
and related text discussion), the highlighted options are related to land use. In this 
example, some opportunity costs are negative meaning that reducing such activity 
generates net earnings not costs. Such options are located to the left of the graph and below 
the horizontal axis. Nevertheless, as the width of these bars is narrow, the quantity of 
abatement potential is relatively small.  

5. Other abatement options have positive costs. Examples related to land use include 
four abatement options of REDD+ from smallholders, reforestation, timber extraction and 
intensive plantation dryland forest. Although the costs range between €<1 and €15, the 
potential quantity for abatement is more substantial than less expensive abatement 
options. 
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Figure 7.1. A national opportunity cost curve  
Source: Dewan Nasional Perubahan Iklim (National Council on Climate Change) and McKinsey and Co. 2009. 
 
6. Such a national analysis is a useful step in understanding the costs of carbon 
abatement. The results, however, are a simplification of a diverse reality. A broad range of 
national and sub-national contexts typically reveals considerable differences from 
generalized results. 

Spreadsheet analysis exercise 
7. The spreadsheet file entitled OppCost is a simplified example of an opportunity cost 
analysis. (See Appendix F for sections of the described spreasheets and manual website to 
download the file SpreadsheetExercisesREDDplusOppCosts.xlsm (with macro).  

8. It is important to note that opportunity cost analysis is based on land use changes. 
Therefore, in addition to the land use legend, information on current land uses and land use 
changes at the national level are required.  

9. In this example, land use information is based on the percentages. The initial land use 
distribution is within a single column of cells. Whereas, the row of future land use is a 
result of numerous land use changes corresponding to a matrix of cells. Land uses changes 
produce carbon emissions in three instances (Figure 7.2). The opportunity cost of avoiding 
a change of logged forest to agriculture is the lowest at $0.44/tCO2e. A land use change 
from logged forest to agroforestry has an opportunity cost of $1.14/tCO2e; and a change 
from natural to logged forest has the highest opportunity cost of  $1.36/tCO2e. A land use 
change from agriculture to agroforestry would imply a negative opportunity cost (in other 
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words – a potential benefit) of $0.84/tCO2e. This type of land use change reflects how the 
higher profits can also store more carbon. 

 
Figure 7.2. Example opportunity cost results from spreadsheet 
 
10. As the number of land uses within an analysis increases, difficulties arise in discerning 
which factors matter most. A convenient way to identify major determinants is through 
sensitivity analyses. One (or more) parameters (e.g. input costs, wages, product prices) 
within an analysis can be changed sequentially or simultaneously in order to assess how 
much it  influences the results. In addition, a structured sensitivity analysis, conducted by 
raising and lower the value of a parameter by a certain percentage, is useful means to 
assess the potential implications of uncertain parameters.   

Sensitivity analyses 
11. Sensitivity analyses are conducted to check the robustness of a quantitative analytical 
model, such as the opportunity cost model presented in this manual. By using such an 
approach, it is possible to identify the parameters that account for more effect in the model 
results. In short, the process of sensitivity analysis involves changing the value of input 
parameters of the model to capture and understand the impact that such changes would 
have on the results. Key steps thus include: 

• Identifying the key input parameters and assumptions that are likely to affect 
the results, 

• Prioritizing parameters for sensitivity analysis (e.g. inputs, yields, prices), 
• Determining the realistic range of variation of the parameter or assumption, 
• Examining the results of low and high estimates of each parameter, 
• Documenting, comparing and discussing the results, 
• Identifying priority scenarios to consider in policy discussions, 
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• Considering additional land use classifications in order to improve precision, 
• Identifying priority areas of research to clarify the range of specific parameters 

(e.g. inputs, yields, prices). 
 
12. In the case of opportunity cost analysis, key parameters for consideration are profits 
and carbon content of the land uses. Profits can change as a result of price or yield changes. 
Estimates of carbon content for different land use may be different with a country or as 
new research results become available.  

13. Here we examine two parameter changes to see their effect on opportunity costs.  

Sensitivity analysis A. Logged forest generates $400NPV instead of $300NPV.  

In the spreadsheet page OppCost, a change in profitability of the logged land use affects 
three of the four opportunity costs (Figure 7.3).  

1. From logged forest to agriculture. The opportunity cost estimate 
decreases from $0.44 to $0.29. In other words, a $100 increase in NPV 
reduces the opportunity cost of the land use change by 34%.  

2. From logged forest to agroforestry. The opportunity cost estimate 
decreases from $1.14 to $0.91. Here, a $100 NPV increase reduces the 
opportunity cost of the land use change by 23%.  

3. From natural forest to logged forest . The opportunity cost estimate 
increases from $1.47 to $2.02. In this case, a $100 NPV increase 
increases the opportunity cost of the land use change by 37%.  

4. From agriculture to agroforestry. No effect.  
Note that the quantity of emission does not change for any of the above. 

 

 
Figure 7.3. Sensitivity analysis A (with logged forest of $400NPV) 
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Sensitivity analysis B. Logged forest contains  150 tC/ha instead of  200tC/ha.  
In the spreadsheet example OppCost, a change in carbon content of the logged land use 
also affects three of the four opportunity costs and corresponding emissions (Figure 7.4).  

1. From logged forest to agriculture. The opportunity cost estimate 
increases from $0.44/tCO2e to $0.58. In other words, a 50tC/ha 
decrease increases the opportunity cost of the land use change by 
32%. The associated emissions change from 928 to 855 TgCO2e. 

2. From logged forest to agroforestry. The opportunity cost estimate 
decreases from $1.14/tCO2e to $0.74. Here, a 50tC/ha decrease 
reduces the opportunity cost of the land use change by 35%. The 
associated emissions decrease from 293 to 171 TgCO2e. 

3. From natural forest to logged forest . The opportunity cost estimate 
increases from $1.47/tCO2e to $1.95. In this case, a 50tC/ha decrease 
increases the opportunity cost of the land use change by 33%. The 
associated emissions increase from 305 to 611 TgCO2e. 

4. From agriculture to agroforestry. No effect.  
 

 
Figure 7.4. Sensitivity analysis B (with logged forest of 150tC/ha) 
 

14. In addition, an appraisal of trends, locations, and behavioral dynamics relating to 
change in a given country can also help identify priority parameters to examine. In this 
manner, sensitivity analyses thereby become related to analysis of different scenarios of 
future conditions and pathways (Chapter 9).  

15. Sensitivity analyses require interpretation and critique of results. Changes in results 
should reflect a “normal” difference, whereby “normal” is determined with discussion to 
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ensure that the result make sense. In other words, sensitivity analysis requires skills of 
science and knowledge of the context. Since models are simplifications of a larger and more 
complex reality, the objective of sensitivity analysis is to ensure that the model behaves as 
expected. 

REDD-Abacus 
16. Opportunity cost curves of only a few land uses can be easily estimated with Microsoft 
XL spreadsheets. Two limitations hinder larger analyses:  

1) Emission reduction options must be ordered according to costs, with lower 
costs to the left of the figure and increasing along the horizontal axis. A 
macro sub-program is needed to create opportunity cost curves.  

2) Identifying and labeling each segment of the curve with a figure requires 
separate manual tasks, which cannot yet be automated. 

17. REDD-Abacus is a computer program that facilitates the creation of cost curves (World 
Agroforesty Center, et al., 2010). Carbon and profit data of numerous land uses and sub-
national regions can be examined entered within the program for analysis (Figure 7.5). By 
dividing a country into distinct sub-national zones, different characteristics that affect 
carbon content (e.g., rainfall or elevation) and profit levels (e.g., yields, farmgate prices) of 
land uses can be recognized in order generate a more accurate analysis of opportunity 
costs. Consequently, the resulting opportunity cost curves represent not only each possible 
land use change but also correspond to each sub-national region (Figure 7.6). The ease of 
data management and calculations helps to speed the process of sensitivity and scenario 
analyses. Appendix G contains an example analysis with results interpretation. 
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Figure 7.5. Land uses and regions of a sample analysis within REDD-Abacus 

 
Figure 7.6.  An opportunity cost curve per land use change and sub-national region 
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Opportunity costs maps 
18. Maps of opportunity cost estimates are useful for visualizing the economic cost of 
avoiding deforestation and benefits of increasing carbon stocks. The analysis team can use 
the results of opportunity cost estimates to analyze their spatial distribution.  

19. Figure 7.7 shows results of the type of map that may be useful for determining a 
starting point in the development of a REDD+ compensation program. It shows the four 
largest areas of forest transition in a central Peruvian Amazon study site between 1990 and 
2007. The values of net emissions and abatement costs, shown in the cost abatement bar 
graph, are derived from the opportunity cost spreadsheet calculations. These calculations 
can be converted to database or tabular files that can then be imported into a GIS, where 
they are linked to the land use transition maps described above.  
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Figure 7.7 An opportunity cost m

ap, central Peruvian Am
azon 1990 – 2007. 

Source: W
hite and H

ym
an, 2009. 



 

 7-11 

20. Analyzing results of the opportunity cost calculations in the GIS has several 
advantages: 

•  Future land use transitions are likely to be found adjacent to past transitions. 
The analysis team can overlay these areas on maps of protected areas, 
biodiversity hotspots, population distribution, the road network, indigenous 
reserves and other maps.  

• Analysts can then visualize where different interventions may be necessary in a 
REDD+ program.  

• Future analysis could use predictions of deforestation and land use change to 
better target REDD+ initiatives.    
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Chapter 8. Co-benefits of water and biodiversity 

Objectives 
1. Explain water and biodiversity co-benefits and their importance within 

REDD+ mechanisms, 
2. Summarize how to address co-benefits within opportunity cost  analysis, 
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What are co-benefits? 
1. It is important to put REDD+ programs into perspective. Forests generate other 
environmental or ecosystem services which have economic value. Such services, or co-
benefits, include biodiversity and water of forests, which are addressed in this chapter.  

2. When co-benefits are present, REDD+ programs can affect more than reducing 
emissions and mitigating climate change. In forests with high levels of co-benefits, say in 
upper water catchments with unique biodiversity, the value of all the benefits could be 
significantly greater than the value of carbon alone. When this higher forest value is taken 
into account (a benefit to the country – not the individual), the opportunity cost of forgoing 
alternative land uses is lower.  

3. The relationships between biodiversity, water ecosystem services, and carbon stocks 
are rarely simple. Within countries, just as forests have different levels of carbon, the level 
of biodiversity and water ecosystem services that forests provide can also be very different. 
Furthermore, priority areas for reducing emissions may not be the same as those for 
generating forest co-benefits. For example, dryer forests may have higher biodiversity and 
less carbon content than moist forests (Stickler, et al. 2009). In order to achieve multiple 
forest benefits when implementing REDD+ programs, countries will need to identify 
potential synergies and trade‐offs of benefit provision.  

4. The objective of this chapter is to present an approach to consider the effects of  two 
of the more substantial environmental co-benefits, water and biodiversity, on the 
opportunity costs of REDD+.67 It is important to note that the chapter is not a definitive 
analysis of water and biodiversity. Rather we discuss the potential importance of water and 
biodiversity services within a context of estimating opportunity costs.  

What are ecosystem services? 
5. Ecosystem or environmental services are the “benefits that people obtain from 
ecosystems.” Forests, and lands in general, provide numerous beneficial ecosystem services 
that can be grouped into four basic types: provisioning, regulating, cultural and supporting 
(Table 8.1). This comprehensive framework of the Millennium Ecosystem Assessment 
(2006) includes services that are the focus of: 

o opportunity cost analysis: most provisioning services,  

                                                        
67 Poverty reduction, enhanced social equity, human and indigenous rights and governance are all important 
REDD+ related topics that also have been categorized as co-benefits. For more on these see Brown, et al. 
(2008) and Meridian Institute (2009). For example, Gold Standard CDM credits emphasize carbon benefits with 
sustainable development benefits. For a CDM project to generate Gold Standard CDM credits, specific sustainable 
development criteria more stringent than UNFCCC requirements must be met. Such credits are voluntary and 
receive a price premium. For more information see: www.cdmgoldstandard.org/  

http://www.cdmgoldstandard.org/
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o co-benefit analysis: water provisioning and other regulating, cultural, 
supporting services 

6. The more tangible and direct benefits come from supporting and provisioning 
services. Less tangible, yet still substantial benefits, are cultural services and associated 
social relations and livelihood security. Given that they are indirect, such benefits are often 
overlooked. Considering such a range of benefits helps to develop a better understanding of 
the many contributions the water makes to ecosystems and society. 

 

Table 8.1. Forest ecosystem services 
Ecosystem service Examples  
Provisioning  Production of food and water (the focus of opportunity cost analysis) 
Food  
Water  
Fiber 
Fuel  

Non‐timber forest products such as fruits, berries, animals  
Water supplies of domestic, industrial and agriculture 
Timber, hemp, silk, rubber  
Fuel wood, charcoal 

Regulating  Control of natural processes 
Climate  
 
Floods/drought 
Disease  
 
Water  

Regulation of the global carbon cycle; local and regional climate 
regulation (albedo effects, regional rainfall etc)  
Reduction of surface water runoff  
Reduced breeding area for some disease vectors and diseases 
transmission, such as malaria  
Hydrological cycle  

Cultural  The non-material benefits obtained from ecosystems  
Aesthetic  
Spiritual  
Educational  
Recreational  

Scenery and landscapes  
Spiritual significance to forests  
Genetic resources, biodiversity 
Tourism  

Supporting  Natural processes that maintain other ecosystem services  
Nutrient cycling  
Soil formation 
Pollination 

Nutrient flows through atmosphere, plants and soils  
Organic material, soil retention  

     Source: Adapted from UN-REDD, 2009. 
 
7. Ecosystem services are interdependent. The amount of one type of ecosystem service 
is often related to other services, especially with forest. High priority conservation areas 
tend to generate multiple services with strong inter-linkages. Nevertheless, studies have 
shown varying degrees of interdependence amongst services. In some cases, minor or 
inverse relationships exist, depending on the types of services. For example, co-costs or 
"dis-benefits" may arise from land management practices that increase carbon density. 
Biodiversity can be lower within monoculture forest plantations.  

8. Identifying such potential negatives are important to consider within a national 
REDD+ strategy. Like co-benefits, co-costs are site-specific consequences and therefore 
best to analyze on a case-by-case basis.  



 

 
 8-4 

How to estimate co-benefits? 
A pragmatic approach 
9. To effectively address ecosystem co-benefits at a national level requires both speed 
and accuracy.  

Tier 1: Participate and Identify  
10. A first step in evaluating co-benefits of forest ecosystems is specifying the ecosystem 
services to be examined. Given the wide array of potential services, priorities per country 
will likely differ. A broad cross-section of public agencies, NGOs, academia and civil society 
should be involved in the identification process to ensure national ownership. 

Examples: national gap analyses conducted by Parties to the CBD.68 

Tier 2: Prioritize and Locate 
11. A second step in evaluating co-benefits is to locate areas with high levels of ecosystem 
benefits. Such a process requires combining distinct opinions and diverse types of data. 
Global and regional analyses, presented below, can supplement or be adapted for national 
analyses.  

Examples: biodiversity hotspots, catchments above urban centers. 

Tier 3: Quantitatively Estimate Economic Values 
12. A third step in estimating co-benefits is estimating their economic value. Such 
information will enable direct comparison across different ecosystem services. 
Nevertheless, economic values do not reflect all values of such services. Moreover, tradeoffs 
are often difficult to value. While economic values can guide policy decisions, other non-
economic values, are likely to have influence. 

Examples: Environmental service valuation and compensation schemes 
 
 

Water co-benefits 
13. Land use affects water and associated benefits in many ways. Table 8.2 summarizes a 
variety of water benefits drawn from two analytical frameworks: international river 
cooperation (Sadoff and Grey, 2005) and ecosystem services (Millennium Ecosystem 
Assessment, 2003). The ecosystem concept provides a comprehensive approach for 
analyzing and acting on the linkages between people and environmental services.  

 

                                                        
68 The CBD Program of Work on Protected Areas (PoWPA) Gap Analysis: a tool to identify potential sites for 
action under REDD+ http://cdn.www.cbd.int/doc/programmes/cro-cut/pa/pa-redd-2008-12-01-en.pdf  

http://cdn.www.cbd.int/doc/programmes/cro-cut/pa/pa-redd-2008-12-01-en.pdf
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Table 8.2. Water benefits and services  

Types of benefit Water benefits / services 
Type of 

environmental 
service(contribution 

to well-being) 
Increasing 
benefits to water 

Water quantity, quality, regulation, soil conservation, 
ecology/biodiversity 

Supporting/Regulating 

Increasing 
benefits from 
water 

Hydropower, agriculture, fishing, flood-drought 
management, navigation, freshwater for domestic 
use  

Provisioning 

Spiritual and religious, recreation and tourism, 
aesthetic, inspirational, educational, sense of place, 
heritage 

Cultural 

Reducing costs 
because of water  

Cooperation instead of conflict, economic 
development, food security, political stability  

Cultural  
(social relations and 
security) Increasing 

benefits beyond 
water 

Integration of regional infrastructure, markets and 
trade, regional stability 

Source: White, et al. 2008, adapted from Sadoff and Grey (2005) and MEA (2003). 
 

Identify benefits  
14. Another way to look at water is from a watershed perspective. Such an approach also 
helps associate environmental services generated from a land use, especially forests. Land-
use decisions can affect the provision of watershed environmental services. Bruijnzeel 
(2005) provides a review of forest-water linkages. Nevertheless, disagreements are 
common about the extent and nature of the effects (Calder, 2005; van Noordwijk, 2005). 
Forest – water linkages are also often debated with many scientific results countering 
common beliefs.69  

15. Land use affects watershed services by affecting: 

o quantity or total water yield (streamflow) 
o regularity of flow (regulation) 
o quality of the water 

 lack of sediment from erosion 
 lack pollution from farm waste (e.g. manure) and fertilizer runoff.  

16. The relative importance of the watershed service depends on the site-specific 
conditions, the type of land-use change, and on the type of water user located within the 
watershed. Different water users have different needs, thereby determining the type of 
water services required. For example, a domestic water supply system needs clean water 
and a regular flow. In contrast, water quality is much less of an issue for a hydroelectric 
power facility. Nevertheless, reducing sediment loads is important for storage reservoir.  

                                                        
69 This section largely based on Porras, et al. (2008) and Pagiola, personal communication, (2010). 
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Quantity or total water yield 
17. Forests can reduce annual flows or quantity of water. Experiments based on 
observations and theoretical reasons confirm that increased evapotranspiration from 
forests reduces annual flows (Calder, 1999). Forests lose more water through evaporation 
than other shorter vegetation, including crops. In dry conditions, the deeper roots of trees 
enable forests to access to water in the ground. Therefore, water losses from forests are 
higher in dry climates. Experiments show that evaporation from eucalyptus forests can be 
twice as much than from agricultural crops.  

18. Forests can also increase total flows of water. In the case of cloud forests, evidence 
suggests that increased water yields from cloud interception (fog droplets on vegetation, 
sometimes called horizontal rain) offset higher rates of evapotranspiration, (Bruijnzeel, 
2001) 

Regularity of flow 
19. The impact of forests on water flow regulation is also unclear. The common view that 
forests act as “sponges” soak up and gradually release water is widespread, although not 
supported by extensive evidence. In theory, forests have two opposing effects on base-level 
flows: (1) natural forests tend to have higher water infiltration, which enables higher soil 
water recharge and increased dry season flows, and (2) increased interception and 
transpiration during dry periods that increase soil moisture deficits and reduce dry season 
flows.  

20. Instances of deforestation reducing seasonal water supplies tend to be site-specific 
and due to different factors. The type of tree species, new land uses and associated 
management practices affect outcomes of forest – water flow relationships. Upper 
catchment cloud interception can also contribute to increased dry season flows (Bruijnzeel, 
2001). However, research from Costa Rica indicates that the added capture may be 
relatively small versus other land uses (Bruijnzeel, 2005).  

21. Common management practices of non-forest land uses is a primary cause of reduced 
water services. For example, where deforestation is associated with high soil compaction 
(from roads, paths or grazing land), water runoff may rise by more than evapotranspiration 
declines. Similarly, exposed soils from tillage and overgrazing often cause increased runoff 
along with soil erosion and downstream sedimentation. 

22. Forest may help reduce flood risks in rain events of “regular-intensity.” The public 
perceives forests as having significant benefits in terms of reducing floods. In theory, 
forests may help to reduce flooding by removing a proportion of the storm rainfall and by 
allowing the build-up of soil moisture deficits through increased evapotranspiration and 
rainfall interception. Expected effects are considered to be most significant for small 
storms and least significant for the largest storms.  
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23. On the other hand, logging activities may increase floods through high impact 
harvesting, drainage practices, and road construction, resulting in increasing stream 
density and soil compaction during logging. Some early hydrological studies show few 
linkages between land use and storm flow. Recent evidence supports a positive 
relationship yet only exist in smaller catchments and during small events. Forest type and 
management affect the extent to which forests absorb excess water during rainy periods. In 
larger catchments, flooding occurs in numerous basins allowing for an averaging of flood 
waters. For prolonged and heavy storms, even large catchments will generate floods, but 
will likely occur even in forested catchments (Bruijnzeel and Bremmer, 1989).  

Quality of water 
24. The relationship between forest and reduced erosion is also not straightforward. A 
general belief exists that high water infiltration rates associated with natural and mixed 
forests will reduce surface runoff – and thus erosion. Moreover, tree roots can bind soils  
thereby reducing the susceptibility of soils to erosion, especially on steep slopes. Trees also 
help to reduce the impact of rain on soils, and thus reduce the dislodgement of soil 
particles. Evidence also suggests that forests are less important than other factors, such as 
ground cover, soil composition, climate, raindrop size, terrain and slope steepness, in 
determining erosion rates.  

25. For any given set of conditions, however, a forested plot will typically cause less 
erosion. It is also important to note that water quality can also be affected by other factors 
unrelated to land use. Untreated effluents from urban centers or industries are a major 
source of contamination unrelated to forest conservation. 

26. Forests reduce sedimentation in some circumstances. Sediment delivery depends on a 
range of site-specific factors, including: the size of catchments, local geology, topology, 
stability of river banks, and land uses and road networks (Chomitz and Kumari, 1998). 
Forests have two potential roles. One, forests tend to be less erosive than most alternative 
land uses. Degraded forests, however, can also be significant source of sediment. Two, 
forests located in riparian corridors can intercept sediment eroded elsewhere before it 
reaches waterways.70 Although changes in land use may have significant impacts on 
sedimentation, comparison is needed between existing levels and before land-use change. 
Very few empirical studies have taken account of all relevant variables.  

27. The extensive root systems of forests is commonly believed to help hold soil firmly in 
place and resist landslides. Nevertheless, this notion only hold true mostly for shallow 
landslides. Large landslides are not necessarily correlated to the existence of forests. 

                                                        
70 This second role is un-mentioned in Porras, et al. (2008) review, but can be a very important one (Pagiola, 
personal communication). 
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28. Natural healthy ecosystems, including forests, help maintain of aquatic habitats. 
Forests positively impact the health of aquatic populations in rivers, lakes and along coasts 
through controlling sedimentation, nutrient loading, water temperature and water 
turbidity (Calder, 2005). In contrast, high sediment and nutrient loads from some 
agricultural land uses are particularly damaging, causing eutrophication and the 
development of algae blooms that starve aquatic life of oxygen and sunlight. 

Quantify benefits  
29. This section needs to end on a much more positive note, indicating the kinds of 
services that forests can generally be expected to be provide, compared to the most 
common alternatives of pasture and cropland. I would put reduced erosion and higher 
water quality at the top of that list, followed by reduced risk of flooding at the local level, 
and improved dry season flow with a question mark. 

30. Benefits from water ecosystem services can be estimated in many different ways. 
These range from local participatory approaches to data intensive global analyses. The 
Rapid Hydrological Appraisal tool (Jeanes, et al. 2006; van Noordwijk, 2006) mixes the two. 
The approach brings together knowledge of land – water linkages from computer-based 
landscape-hydrological simulation models with stakeholder perceptions of watershed 
functions. Using participatory rural appraisal techniques the tool explores stakeholders’ 
perceptions on: 

o severity of watershed problems in relation to land use 
o positive contributions generated from specific land-use practices 
o the potential of compensation for supporting positive actions upstream. 

31. The appraisal is developed over a six month period, and has five steps: 

o month 1: inception and reconnaissance of stakeholders and issues; 
o months 2–4: baseline (desktop) data collection of existing literature and 

reports; 
o months 3–4: baseline (fieldwork) data collection: spatial analysis, 

participatory landscape analysis, surveys of local and policymaker ecological 
knowledge; 

o months 3–5: data processing into modeling and preparation of scenarios; 
o month 6: communications and refinement of the findings. 

 

Biodiversity co-benefits 
32. What happens to the opportunity costs of REDD+ when forests have a high 
biodiversity value? Since biodiversity of forests can generate economic benefits, the 
difference between the profits from forest and non-forest land uses is lower. Thus, the  
opportunity costs of a REDD+ program are less. Assuming that the landowners earn profits 
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from biodiversity, fewer funds need to be invested in order to compensate them for 
conserving the forest (and biodiversity). 

33. Biodiversity can alleviate the need for REDD+ projects. In some high-profile 
biodiverse forests, the value of the forested habitat could exceed the value generated from 
any other land uses.71 Tourists, for example, are often willing to pay to see mountain 
gorillas or jungle wildlife in national parks. If biodiversity benefits are reflected in the 
returns that landholders generate from a given area, such benefits are not considered co-
benefits as they can be included within opportunity cost estimates. Nevertheless, land 
tenure arrangements can complicate such calculations as many forests are protected areas, 
whereby locals have rights ranging from none to limited use.   

34. Should a country consider biodiversity a co-benefit to itself or not? With water 
services generated by avoiding deforestation, associated improvements provide benefits 
within the country (e.g., cleaner water, lower flood risk, etc).72 Thus, it makes sense for a 
country to try to foster these benefits. In contrast, biodiversity is different. Most benefits 
are enjoyed outside the country. Much like the case of carbon sequestration, biodiversity is 
a primarily a global benefit. Therefore, a country would be unlikely to devote efforts to 
securing these benefits unless compensated for doing so. 

35. Fortunately most countries have already prepared elaborate biodiversity conservation 
priority analyses, under their National Biodiversity Action Plans and other programs. Thus, 
REDD+ planners can utilize these existing plans by adapting associated maps to land use 
analyses of REDD+. 

36. The range and complexity of plants and animals within a forest creates problems of 
biodiversity identification and quantification. Since the 1950s, debates on the 
measurement of biodiversity have remained at the center of substantial part of the 
ecological literature. This lack of consensus also has important implications for the 
estimating the value of biodiversity conservation. Any measure of cost-effectiveness used 
to guide investments in conservation must have some index or set of indices of biodiversity 
change (Pearce and Moran, 1994). Similarly, without accurate biodiversity co-benefit 
measures, REDD+ investments based on opportunity costs may not be justified. Issues of 
biodiversity measurement and valuation are discussed below. 

Identify biodiversity: What is biodiversity? 
37. Biological diversity, or biodiversity, is the variety of living plants, animals and micro-
organisms on Earth. Biodiversity is used to describe a wide range of life: from genes to 
ecosystems. Biodiversity is different from the global stock of biological resources, a more 

                                                        
71 In such cases, the opportunity costs of REDD+ could theoretically be negative. 
72 And sometimes by other countries, as with transboundary rivers. 
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anthropocentric term for forests, wetlands and marine habitats. Biological resources are 
typically known elements of biodiversity that maintain current or potential human uses.  

38. Biodiversity is important for ecosystem stability and function. Ecosystem stability has 
two components: resistance and resilience. Resistance is the “shock-absorbing” capacity of 
an ecosystem, the ability to withstand environmental change. In contrast, resilience is the 
ability of an ecosystem to return to its previous condition or  “bounce back” after it has 
been severely disturbed. Loss of biodiversity typically affects both ecosystem resistance 
and resilience.  

39. Alteration or conversion of natural habitats into agricultural lands is a primary cause 
of rapid biodiversity loss.73 Conversion of forests severely changes or simplifies an 
ecosystem. Modern agricultural practices, often monocultures of crop production, are an 
extreme case of simplification. 

40. The potential impacts of accelerated extinction and depletion of biodiversity may be 
discerned sooner and later. In the long term, processes of natural selection and evolution 
may be affected by a diminished resource base, simply because fewer species are being 
born. The implications of species depletion for the integrity of many vital ecosystems are 
not known. The possible existence of depletion thresholds, associated system collapse, and 
huge impacts in related social welfare, are potentially the worst outcomes in any time 
horizon. More immediately, the impoverishment of biological resources in many countries 
might also be regarded as an antecedent to a decline in community or cultural diversity 
(Harmon, 1992). 

Quantify biodiversity  
41. Finding measures of biodiversity that can be used for policy decisions remains 
challenge. A number of factors cause difficulties. Determining the presence of a species or 
ecosystem in a specific location is not a straightforward task. Neither species or ecosystems 
have clear distinguishing boundaries. Although numerous species have been and continue 
to be identified,74 at times the definition of a particular species or boundary between 

                                                        
73 Losses can also be caused by: 

• excessive harvesting of particular species, especially of high economic value, 
• consequence of invading alien species including diseases, 
• impacts of pollutants, 
• extinction of essential companion species (e.g., pollinators, fruit or seed dispersers),  
• climate change. 

These causes of loss are outside the scope of REDD. 
74  Between about 1.5 and 1.75 million species have been identified (Lecointre and Le Guyader, 2001). 
Scientists expect that the scientifically-described species represent only a fraction of the total number of 
species on Earth. Many additional species have yet to be discovered, or are known to scientists but have not 
been formally described. Scientists estimate that the total number of species on Earth could range from about 
3.6 million up to 117.7 million, with 13 to 20 million being the range most frequently cited (Hammond, 1995; 
Cracraft, 2002). 
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species is debated and subject to revision (Gaston and Spicer, 1998). Similar difficulties 
challenge ecosystems. While the identification of ecosystems has improved with 
geographic information system technology (World Resources Institute, 2009), distinctions 
between ecosystems can be difficult to determine. Furthermore, ecosystems can be a 
moving target as climate change can have widespread effects (UNEP, 2008). 

42. In sum, measurement of biodiversity is complex. Biodiversity is a multi-dimensional in 
scale (ranging from genes to ecosystems) and has different characteristics or attributes.  
Three features of biodiversity are often used to measure biodiversity: structure, 
composition and function, each at a different scale (Box 8.1). Structure is the pattern or 
physical organization of the biological components. Composition is their identity or variety. 
Functions refer to the ecological and evolutionary processes. 

 
 

 
Box 8.1. Measurement approaches of biological diversity at different scales 
(adapted from Putz, et al., 2000) 

Scale 
Measurement approach  

Structure Composition Function 

Landscape  
Regional mosaics of land uses, 
ecosystem types  

Areas of different 
habitat patches; 
inter-patch linkages; 
perimeter-area 
relations 

Identity, 
proportions and 
distribution of 
different habitat 
types  

Patch persistence (or 
turnover); inter-patch 
flows of species, energy 
and other resources 

Ecosystem  
Interactions between members of a 
biotic community and environment 

Vegetative biomass, 
soil structural 
properties  

Bio-
geochemical 
stocks  

Processes, including bio-
geochemical and 
hydrological cycling 

Community  
Functional groups (e.g., guilds) and 
patch types occurring in the same 
area, and strongly interacting 
through biotic relationships 

Vegetation and 
trophic* structure  

Relative 
abundance of 
species and 
functional 
groups  

Flows between patch 
types, disturbances (such 
as fires and floods), 
succession processes, 
species interactions 

Species/population 
Variety of living species and their 
component populations at the 
local, regional or global scale 

Population age 
structure or 
distributions of 
species abundance  

Particular 
species ** 

Demographic processes 
such as death and 
recruitment.  

Gene  
Variability within a species:  
variation in genes within a 
particular species, subspecies or 
population 

Heterozygosity or 
genetic distances 
between populations  

Alleles and their 
proportions  

Gene flow, genetic drift or 
loss of allelic diversity. 

*  the position that an organism occupies in a food chain. 
** can address issues of safe minimum standard. 
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Measurement indices 
43. Species richness and species evenness are commonly used as measures of diversity 
(Magurran, 1988). Both indices are based on identifying and counting species. Besides the 
drawbacks of identification mentioned above, use of the index assumes that all species 
present in a plot can be counted. The total number of species, however, is too high and 
there is no assurance that each one has been found. To illustrate the difficulty, one cubic 
centimeter of soil contains so many microbes that years of analysis would be required to 
fully characterize them. 

44. Since comprehensive biodiversity measurement is not feasible, an ongoing debate 
surrounds the question of which groups of organisms to sample. These subsets of 
biodiversity are considered a surrogate for overall biodiversity. Plants are important, as 
they are the primary producers in an ecosystem and animals depend on them for food, 
shelter, etc. Vascular plant species75 are relatively well known (e.g., compared to fungi).  

45. Certain animal groups (e.g., birds and butterflies) have been well studied and are 
commonly used as indicator taxa. The choice of these animals, however, has usually been 
due to practical considerations like their visibility (and audibility in the case of birds), and 
the fact that their taxonomy and biology has been relatively well studied. Care should be 
taken when counting the number of animal species within a plot, whichever group has been 
chosen. Some individuals may be temporary visitors rather than actually resident in the 
plot. Furthermore, land uses with different vegetation can affect the visibility (e.g., more 
birds can be seen an open grassland than in a densely-vegetated complex agroforestry 
system). 

Compositional diversity 
46. Species richness is the simplest measure of biodiversity. Richness (or diversity) refers 
to the presence or absence of species in a plot and the total numbers of species for a 
particular group. Box 8.2 presents analyses of species richness for three ASB sites. The 
Simpson Index is a measurement that accounts for the richness and the percent of each 
subspecies from a biodiversity sample within an area. The index assumes that the 
proportion of individuals in an area indicate their importance to diversity.  

 

 

 

 

 

                                                        
75 higher plants that have lignified tissues (e.g., ferns, bushes, trees). 
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Box 8.2. Plant species richness in tropical forest margins 
ASB scientists used a minimum standard of data collected in all sites: the number of plant 
species per standard plot (40 x 5 m). The results from forest and forest-derived land covers 
in three continents are found in Table 8.3.  

Table 8.3. Plant species richness of land uses in three ASB sites  
 
Land use  

Number of plant species within a 200 m2 plot 
Brazil Cameroon Indonesia 

Natural forests  63 103 111 
Managed forests  - - 100 
Logged forests  66 93 108 
Extensive agroforests  47 71 112 
Intensive agroforests   - 63 66 
Simple tree systems  25 40 30 
Long fallow agriculture  36 54 43 
Short fallow agriculture  26 14 39 
Continuous annual crops  33 51 15 
Pasture/grasslands  23 25 11 
Intensive pasture 12 - - 

 

 

47. Forests typically have significantly higher levels of plant species richness. 
Nevertheless, disturbances to forests can increase diversity. After logging, newcomers 
species can cause biodiversity estimates to be greater that estimates in pristine forests 
(Cannon, et al., 1998). 

Structural diversity 
48. Species evenness is a measure of structure. Evenness is the relative abundance with 
which each species are represented within a specified area. The Shannon-Wiener index 
takes into account subspecies richness and proportion of each subspecies. The index 
increases either by having additional unique species, or by having a greater species 
evenness. The index is also called the Shannon or the Shannon-Weaver index. 

49. A species richness index can account for evolutionary differences amongst species by 
assigning weights to species taxa. Differences in genetic composition are determined by 
family tree. Nevertheless, taxonomic analysis is data demanding and may not be a feasible 
approach for biodiversity assessments. 

Functional diversity 
50. Measuring only species is often considered inadequate in estimating biodiversity. 
Examining functions, or how plants and animals have adapted to their environment, is a 
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useful concept in measuring biodiversity. Plant and animal are classified according to their 
functions: what they do and how they do it. For example, the classification of below-ground 
organisms can be based on groups of animals that perform decomposition functions within 
an ecosystem, turning fallen leaves into other soil organic matter. Birds can be classified 
into functional groups (guilds) depending on their eating habits (trophic interations). 
Species pertain to certain ‘diet guilds’ depending on what they eat (e.g., fruit, nectar, insects 
or seeds), or into certain ‘foraging guilds’, depending on where they eat (e.g., in the tree 
canopy, understory vegetation, or on the ground). Land uses can be compared according to 
the percentage of species falling into each guild.  

51. Plants can also be classified into functional groups. Adaptive traits (i.e. characteristics 
that plants have developed to exploit or cope with the conditions of a particular 
environment) are likely to be similar within similar ecosystems - on whichever continent. 
Therefore, similar functional types may conduct the same activities (and fill the same type 
of niche) in the forests of the Africa, Asia or Latin America. For example, across the 
continents, the first trees (pioneers), which grow in an open patch of land and have very 
large leaves, belong to different plant families. Yet, the functional types of plants are 
comparable across continents in different parts of the lowland tropics. 

A composite approach to estimate biodiversity 
52. The V-index estimates the similarity of a land use to natural forest. It is a vegetation 
index calculated using a set of plant-based variables that are highly correlated with land 
uses, plant and animal richness and soil nutrient availability (Gillison, 2000b). The index 
can be also used as an indicator of land use impact on biodiversity and is based on key 
vegetation structural, plant taxonomic and functional types (PFTs). The index is not a direct 
measure of biodiversity, but more an indicator to characterize habitats or sites. 
Nevertheless, the V-index does include measures of vegetation structure, which is 
important in determining biodiversity. The component measures used to calculate the V-
index are: 

o mean tree canopy height, 
o basal area (m2 / ha), 
o total number of vascular plant species, 
o total number of PFTs or functional modi 
o the ratio of plant species richness to PFT richness (species/modi ratio) 

53. The index is calculated using a technique called multi-dimensional scaling. Results are 
scaled between 0.1 and 1, with 1 being the value of natural forest. Therefore, each value of 
the index representing a land use indicates how much that land cover differs from the local 
natural forest, which serves as the reference point. An advantage of the V-index approach is 
that measurements are easy to make in the field (with no hi-tech equipment). Nevertheless, 
a computer is needed to convert the individual measurements into an index measure. Step 
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by step instructions regarding which data to collect, how, and how to analyze with the 
software are found in the VegClass manual (Gillison, 2000b).  

54. The V-index was calculated for a range of forest margin land uses in Cameroon, 
Indonesia and Brazil. The index corresponds closely with observed impacts of land use on  
biodiversity, crop production and associated time since tree clearing.  For example, in all 
sites, the V-index tends to be highest for primary forest, decreases through secondary and 
logged-over forests, then complex agroforestry systems, tree plantations and fallow 
systems and is lowest in annual agricultural crop systems, grasslands and pasture. Complex 
agroforestry systems based on economically-valuable tree crops have a much greater 
similarity to forest than monoculture plantations of the same tree crops. In Cameroon, 
jungle cocoa has a larger V-index value than plantation cocoa (Figure 8.1). Similarly in 
Indonesia, the V-index value of jungle rubber is greater than that of plantation rubber 
(Figure 8.2). 

 

 
Figure 8.1. V-index values of land uses in Cameroon.  
RF: Rainforest; Raff. palm: Raffia palm; J. cocoa: jungle cocoa; Chrom: Chromolaena odorata (fallow); Cocoa 
PL: cocoa plantation (monoculture).  
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Figure 8.2. V-index values of land uses in Indonesia.  
RF: Rainforest; Jung.rub: jungle rubber; Log.’83: Logged rainforest in 1983; Rub plt.: Rubber plantation; Log. 
ramp: Logging ramp; Para. plt: Paraserianthes falcataria plantation; Chrom.: Chromolaena odorata. 
 
 

55. In summary, the V-index is a measure of the complexity of vegetation. Biodiversity is 
positively correlated with structural complexity and the number of ecological niches 
available for plants and animals.  

 

Comparing  biodiversity estimates at different scales 
56. While diversity measures can be expressed per unit area, they cannot be converted 
easily to other units of area (Rosenzweig, 1995). In other words, estimates of biodiversity 
at the landscape level are not calculated by simply adding across a series of plot estimate. 
The same species may be found in a number of plots, and such a procedure would lead to 
multiple counting. As biodiversity is sampled over larger and larger areas of a particular 
ecosystem, the number of additional species observed will increase, but at a decreasing 
rate (Figure 8.3). Eventually the curve levels off, meaning that even though the area may 
increase, any new species will not be found.  
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Figure 8.3. A species-area curve 
 

 
Box 8.3. A cautionary note with species-area curves 
Scaling relations (the shape of the species-area curve) may differ between types of 
vegetation (Figure 8.4), or between types of species. This may be due to fundamental 
differences in the ecology of the species or vegetation type. Therefore, comparison of 
species richness per plot is valid only for plots of the same size in two different land uses. 
 

 
Figure 8.4. Species area curves for three land uses in Cameroon  
Source: Gillison (2000a) 
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57. Another way to examine scalar relationships of biodiversity is to associate three types 
of diversity (Figure 8.5).  

o Alpha diversity – is species richness within a particular area, community or 
ecosystem, measured by counting the number of taxa within the ecosystem 
(typically species). 

o Beta diversity – is species diversity across ecosystems, comparing the 
number of taxa that are unique to each of the ecosystems. 

o Gamma diversity – is species richness of different ecosystems within a 
region. 

 

 
 

Figure 8.5. Biodiversity at different scales  
 
 
58. For analysis of tropical forest margins, ASB contrasted the biodiversity of land uses. 
To obtain results comparable across the sites, standard protocols were used. The 
methodology for choosing plots can be found in Gillison (2000b). The studies were 
complemented by a detailed baseline study in Indonesia, which collected detailed 
information on vegetation, birds, insects, soil animals and canopy dwelling species 
(Gillison, 2000a). 

 

Biological resources and conservation priorities 
59. Given the data requirements and difficulty of measuring biodiversity, biological 
resources (e.g., species and ecosystems) are often used as a surrogate in the development 
of conservation priorities and strategies. The species-area relationship in regions of high 
species richness is one rapid approach to identifying conservation priorities (Brooks, et al. 
2006). When such hotspot areas are under threat of land conversion, priorities can become 
urgent. Nevertheless, the cost of conservation efforts may be high and chances of success 
low, thereby further confounding biodiversity conservation challenges. 

60. Gap analysis is another method to identify biodiversity (i.e., species, ecosystems and 
ecological processes) that are inadequately conserved within a protected area network or 
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through other long-term conservation measures. Although the number and size of 
protected areas continue to grow, a large number of species, ecosystems and ecological 
processes are not adequately protected. Gaps come in three basic forms: 

• Representation gaps: a particular species or ecosystem does not exist within a 
protected area, or examples of the species/ecosystem insufficient to ensure long-
term protection. 

• Ecological gaps: although the species/ecosystem is represented in an area, the 
occurrence is either of inadequate ecological condition, or the protected area(s) fail 
to address the changes or specific conditions necessary for the long-term species 
survival or ecosystem functioning. 

• Management gaps: protected areas exist but management (objectives, governance, 
or effectiveness) do not provide adequate security for particular species or 
ecosystems. 

61. Gap analysis is a process that starts by setting conservation targets. Next, biodiversity 
distribution and status are evaluated and compared with the distribution and status of 
protected areas. The CBD Program of Work on Protected Areas (PoWPA) gap analysis can 
provide mapping data and tools for REDD. For more on gap analysis and recent research 
results see Dudley and Parish (2006), Langhammer, et al. (2007) and IUCN publications.  

 

Value biodiversity 
62. Despite the importance of biodiversity, economic valuations are often complex, 
expensive and likely imprecise. To address these shortcomings, non-economic methods 
exist that help to examine public concern for biodiversity. Insights gained from public 
participation can complement benefit-cost approaches for policy decisions. Appendix E 
includes details on estimating the value of bio-diversity also the references below contain 
numerous sources. 

Co-benefits and opportunity costs 

63. Benefits of forests can be divided into three categories: 

• on-site benefits (e.g., fuelwood, timber, non-timber forest products, tourism)  

• off-site benefits  

o within-country (e.g., protection of water services).   

o outside-country (e.g., carbon sequestration and biodiversity habitat).  

64. Within REDD+ discussions, off-site within-country benefits are typically termed: co-
benefits of conserving, improving or establishing forests.   

 



 

 
 8-20 

65. Here we present two sample “Tier 2” studies. Pagiola, et al. (2006) identify areas 
within the highlands of Guatemala that are important for water and biodiversity services. 
Such information can be used in conjunction with opportunity cost estimates to determine 
whether particular areas should be prioritized within a REDD+ program (Box 8.4). The 
second example of co-benefits maps comes from Tanzania (Box 8.5).  

 

Box 8.4. A national analysis of water and biodiversity benefits 
Spatial analysis of water and biodiversity can help identify priority conservations. For 
example, Pagiola et al. (2007) developed maps of water supply and biodiversity 
conservation priority areas in Guatemala. Maps contain a simple but useful amount of 
quantification, and could be made more complex if and when data become available. Figure 
8.6 shows a relationship between municipal water supply systems and associated supply 
systems. Darker red areas highlight areas that serve more households per area of 
catchment. This calculation can serve as a potential indicator of water co-benefit. 

 
Figure 8.6. Municipal water systems and supply areas, Guatemala. 
Source: Pagiola, et al. 2007. 
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Box 8.5. National analysis of multiple benefits: An example from UN-REDD 
An effective way to identify and document co-benefits is through maps. One example of a 
recent effort is from UN-REDD+ Program at the UNEP World Conservation Monitoring 
Centre (WCMC) and the Tanzania Ministry of Natural Resources and Tourism. A national-
scale analyses of co-benefits and other factors was conducted, including population density, 
honey-beeswax-gum production, and mammal and amphibian species richness (Figure 
8.7). In addition, a revised combined soil and biomass carbon map for Tanzania was 
produced (UN-REDD+ Program, 2009). 

 
Figure 8.7. A combined NTFP priority areas and soil-biomass carbon map of Tanzania  
Source: Miles, et al. 2009.  
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66. Naidoo et al. (2008) reviewed theory, data, and analyses needed to produce ecosystem 
services maps. Data availability allowed the quantification of imperfect global proxies for 
four ecosystem services: carbon sequestration,76 carbon storage,77 grassland production of 
livestock and water provision. Using this incomplete set as an illustration, ecosystem 
service maps were compared with the global distributions of conventional targets for 
biodiversity conservation.  

67. Preliminary results show that regions selected to maximize biodiversity provide no 
more ecosystem services than regions chosen randomly. Furthermore, spatial concordance 
varies widely amongst different services, and between ecosystem services and established 
conservation priorities. Nevertheless, “win–win” areas of ecosystem services and 
biodiversity can be identified, both among eco-regions and finer scales. An ambitious 
interdisciplinary research effort is needed to fully assess synergies and trade-offs in 
conserving biodiversity and ecosystem services. Comparisons of these attributes of land 
use changes can reveal tradeoffs and synergies useful for understanding the potential role 
of REDD+ policy to foster desired outcomes.  

An example of co-benefit analysis 
68. Although the value of co-benefits is very difficult to estimate and even more 
challenging to convert into per hectare values, opportunity cost analysis can guide where: 

a. quantification and perhaps valuation efforts are priority, 
b. the identification of land uses to include in a REDD+ program. 

69. Figure 8.8 contrasts five emission abatement situations with different abatement costs 
and water co-benefits. For the purposes of illustration, these situations refer to a change 
from forest to agricultural land use with co-benefits from downstream water quality and 
availability. In order to directly compare both carbon and water benefits, the same unit of 
analysis must be used. This example converts the typical $/ha estimate of water co-benefits 
to a $/tC02e measure (requires dividing the water co-benefits by the associated tCO2e of 
the land use). Water co-benefits can be considered REDD+ cost reductions, as represented 
by lighter green area. 

70. Options A, B, and C have REDD+ costs less than the price of carbon (Pc). In contrast, 
option E has REDD+ costs higher than Pc. Only options A, B, D and E have water co-benefits. 
Even without the water co-benefits Options A, B and C would be priorities for REDD+ 
program inclusion given their low REDD+ costs. With the large water co-benefits, options B 
and D would be more of a priority that option A. 

                                                        
76 Net annual rate of atmospheric carbon added to existing biomass carbon pools. 
77 Amount of carbon stored in vegetation both aboveground and belowground. 
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                                 Co-benefit estimation important 

 

Figure 8.8. Identifying priority co-benefit analyses  
Adapted from: Pagiola, 2010 personal communication. 

71. Options D and E have higher REDD+ costs than the carbon price and would normally 
not be included in a REDD+ program. With consideration of water co-benefits, however, the 
option D would viable. Estimating benefits is more important for the case where the REDD+ 
costs exceed the price of carbon. In cases where the carbon costs are less than carbon price 
(Options A, B, C, D), estimation of co-benefits is less of a priority. 

72. With respect to biodiversity co-benefits, an analysis would be similar – except that 
benefits can rarely be realized by a country. Protecting high biodiversity areas typically 
generate benefits outside the country (especially if tourism is not linked to biodiversity). 
Within Figure 8.8, avoiding deforestation in Area E based on carbon payments and water 
co-benefits may not be in the best interest of the country. The alternative land use poses 
greater benefits. Nevertheless, the country could try to attract a biodiversity-oriented 
donor to complement the carbon payments in order to make conservation viable. 

Conclusion 
73. The value of co-benefits can be substantial and greatly affect the opportunity cost 
estimates of REDD+ projects. Whether to or how to recognize water and biodiversity 
benefits within REDD+ policies is still being discussed (Ebeling and Fehse 2009; Pagiola 
and Bosquet, 2009). Though a REDD+ mechanism offers opportunities to achieve both 
carbon and other co-benefits, the limitations of a REDD+ mechanism to act as a panacea for 
biodiversity loss or water problems needs to be challenged. Overemphasis on non-climate 
change objectives within a REDD+ mechanism comes with a risk of raising transaction 
costs, potentially reducing the ability to conserve forests. 
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74. Specific suggestions for policy-makers include the following : 

• Biodiversity 78 

o Develop a national information base on national biodiversity to increase 
the likelihood of achieving and maximizing a range of biodiversity co-
benefits in REDD. Biodiversity-targeted funding can then have better 
understanding of biodiversity and aim to complement REDD+ financing, 
such as focusing in areas with high biodiversity and low carbon benefits. 

o Link on-going REDD+ demonstration activities with biodiversity 
performance assessments of monitoring, reporting and verification. This 
will enable the analysis, comparison, and evaluation of different 
approaches and methods used to promote biodiversity co-benefits in a 
REDD+ context. Lessons learned during the implementation of these 
REDD+ demonstration activities can ultimately feed into the international 
and national level policy-making processes. 

o Establish a technical working group on REDD+ biodiversity co-benefits to 
develop best-practice guidelines and principles, including indicators for 
biodiversity. Such a group could also help guide the policy decisions and 
implementation REDD+ activities at the national, regional and/or local 
levels. 

• Water 

o Establish an national information base (e.g., inventories, maps) of water 
resources to increase the likelihood of achieving and maximizing water co-
benefits in REDD. Water-targeted funding can then work within a REDD+ 
context, in order to focusing on areas of important water services (e.g., 
upper catchments). 

o Support and review efforts in modeling water ecosystem services and link 
government decisions with national REDD+ policy development and 
implementation. The clarification of diverse water services (e.g., flow 
regulation, water quality, etc.) will help policymakers prioritize 
government investments and actions. 

o Establish a technical working group on REDD+ water co-benefits to develop 
best-practice guidelines and principles, including indicators for water 
services. Such a group could also help guide the policy decisions and 
implementation REDD+ activities at the national, regional and/or local 
levels. 

                                                        
78 Adapted from Karousakis (2009). 
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Chapter 9. Tradeoffs and scenarios 
 

Objectives 
1. Discuss tradeoff and synergies associated with REDD+ policy 

2. Present methods to conduct scenario analyses to address uncertain future 
policy and economic contexts.  

 
Contents 
Tradeoffs ................................................................................................................................................... 9-2 
Scenarios ................................................................................................................................................... 9-5 
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Tradeoffs 
1. A  tradeoff is a situation involving a loss of one thing with a gain in another. Win-lose 
situations are tradeoffs. They are often depicted with two dimensional graphs, by an 
inverse relationship (or downward slope of points) displaying the tradeoff. The axes of the 
graph are in typically in physical units of the good or service.  

2. The relationship between profits from and carbon within different land uses is an 
example of a tradeoff (Figure 9.1). The horizontal axis represents carbon content of a land 
use (t/ha); the vertical axis corresponds to profits of a land use ($/ha). Natural forests, in 
the lower right-hand section, have high carbon stocks but low profitability. Agricultural 
crops, in contrast, have low carbon and high profitability. Some land uses, such as extensive 
cropping and cattle raising in this example, do not represent a tradeoff since they have both 
low carbon and profitability. More importantly, there are no apparent “win-win” high-
carbon with high-profit land uses, as evidenced by no examples in the upper-right portion 
of the graph.  

 
Figure 9.1. Example tradeoff of land uses: NPV profit vs. carbon stock 
 
3. Many other REDD-related tradeoffs exist, for example, between profits and 
biodiversity co-benefits and profits and water co-benefits. Table 9.1 summarizes likely 
relationships, tradeoffs (-) or complementarities (+), between profits, employment, carbon, 
biodiversity and water. Instead of being tradeoffs, relationships between carbon, water and 
biodiversity are likely to be positive, also between profit and employment. A larger amount 
of one of these goods and services is likely to be linked with larger amounts of the other. 
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Generally, the human goods/services of profits are inversely related to the natural 
goods/services of carbon, biodiversity and water. 

 

Table 9.1. Likely tradeoffs and complementarities of goods & services from land uses 
 Employment Carbon Biodiversity Water 
Profit  + - - - 
Employment  - - -  
Carbon   + + 
Biodiversity     + 

 
4. A well-known tradeoff exists between profitability and biodiversity conservation. 
Farmer efforts to increase crop productivity often decreases biodiversity. Consequently, 
farmers may be unwilling to tolerate plant diversity and will remove trees and weeds in 
order to improve profit margins. Such productivity gains often occur in both agricultural 
monocrops and mixed land use systems. In rubber agroforests of Indonesia, for example, 
the number of rubber trees per unit area increased rubber production. Meanwhile, the 
number of other tree species decreased correspondingly (Lawrence, 1996). Extreme, yet 
common, cases are where economically-important agricultural crop or tree species are 
grown as monocultures. 

5. At a landscape level, conservation and development objectives can become less clear. 
The spatial arrangement of land uses types can raise the question of how to achieve 
optimal levels of biodiversity within a landscape. Let’s illustrate this point with an example. 
An entire landscape of monoculture oil palm has less biodiversity than a landscape 
containing a mixture of different-aged forests of native species within a mosaic of 
smallholder farms.  

6. A ‘segregated’ option is to keep agriculture and forest completely separate: the forest 
untouched (with high biodiversity), and intensive agricultural production using 
monocultures e.g., oil palm, rubber, foodcrops with high intensity use of inputs (very low 
biodiversity). In contrast, an ‘integrated’ option incorporates/conserves as much 
biodiversity as possible in the farms within the landscape e.g., in fallows, complex cocoa 
agroforests, or multistrata agroforestry systems (including Brazil nut, mahogany, peach 
palm etc.).   

7. The consequences for biodiversity of the segregate-integrate choices are of a mixed 
nature (Table 9.2). On the agricultural side of a ‘segregated’ landscape, the main benefits of 
agrobiodiversity may focus on the prevention or control of outbreaks of pests and diseases 
along with pollination. Yet, at the same time, forest animals can damage crop harvests. 
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Table 9.2. Biodiversity benefits: segregated versus integrated landscapes 

Segregated - Agriculture Segregated - Natural 
forest 

Segregated landscape 
with Ag + Forest 

Integrated - Agroforestry 
mosaic 

Agrobiodiversity mainly 
relevant for pest and 
weed control 

Large reserves 
desirable to maintain 
viable populations 

Sharp (fenced) 
boundaries reduce 
conflict but create 
isolated and potentially 
unviable populations 

Agrodiversity provides 
benefits or has relatively 
little negative impacts on 
human activities 

Adapted from: Williams, et al. 2001. 
 
 
8. Although economic – environmental tradeoffs may exist, the magnitude of the losses 
versus the gains can reveal opportunities for beneficial, and perhaps optimal, compromises. 
In some instance, it is possible to achieve a substantial gain with a small loss. Such insights 
into relationships help reveal the consequences of different policy options.  

 

Spreadsheet analysis exercise 
9. Let’s examine a number of tradeoffs and complementarities. The worksheet entitled 
Tradeoffs (in the SpreadsheetExercisesREDDplusOppCosts.xlsm file, or see Appendix 
F for a view) is a simplified version containing four land uses and compares three 
attributes of the land uses: profits, carbon and employment. The study context is the 
Peruvian Amazon. Data inputs are per ha estimates for carbon, profit and workday per land 
use. Outputs are three tradeoff graphs: profitability vs. carbon, profitability vs. employment 
and employment vs. carbon. Adjustments to the data within the land use legend will affect 
the associated graphs. 

10. While profitability and employment reveal a complementary relationship, both 
comparisons of profitability vs. carbon and employment vs. carbon are tradeoffs. 
Agriculture and agroforestry land uses generate more profits and have less carbon than 
logged and natural forests. In this example, agroforestry generates both greater profits and 
has higher carbon content than agricultural land uses. Therefore, given these criteria 
agroforestry would be a preferable policy option. Nevertheless, such broad conclusions are 
based on two specific criteria. Many other criteria exist that make agriculture a valuable 
land use, such as the importance of staple food produced and ability to generate earnings 
without a lag time. (See Chapter 6 for further explanation.)  
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Scenarios 
11. In simple terms, scenarios are logically-consistent and realistic stories about the 
future. Scenarios can account for a variety of possible futures and their associated 
uncertainties. Scenarios encourage us to open our minds in order to consider the range of 
changes or surprises that could occur in the future and think about their impacts. They go 
far beyond a “business as usual” approach, where we anticipate the future by looking at the 
past. Thus, scenarios can help to improve the understanding of decision-makers about the 
potential consequences of decisions taken today. 

12. While sensitivity analysis (in Chapter 7) considers the effects of marginal changes in 
specific parameters of land uses both biophysical (e.g. carbon content) and economic (e.g., 
prices of outputs, efficiency of production, costs of inputs and net present value), scenario 
analysis can considers changes in groups of parameters due to overall economic changes, 
the introduction or prohibition of specific land uses, or alternative rules regarding the 
eligibility of land uses and land use changes for mitigation payments. Possible scenarios 
include: 

o Large shifts in relative prices due to changes in the world commodity 
markets. An example contrasts is a high price scenario (2008), and a low 
price scenario (2006). Such scenarios need to be translated into sets of 
adjusted price parameters. 

o Shifts in relative prices due to domestic or international policies. For 
example, biofuel policies have potential to shift prices for oil palm or sugar 
cane. 

o Changes in property rights. Uncertainty in property rights can be captured 
in NPV analysis through explicit adjustments to NPV estimate, where 
expectations explicitly recognize the probability of a land user being able to 
invest and capture increased future revenues.  In the Sumberjaya area of 
Indonesia, for example, farmers are less than certain that they will be able to 
benefit from land investments.   

o Policy-induced changes in returns to alternative land uses.  Policies can 
foster technology change and thereby affect production efficiency. Examples 
include improved access to fertilizers in Africa, export taxes (cocoa in Ghana) 
and subsidies (e.g., Malawi’s agricultural input subsidy programs) 

o Carbon market scenarios.  A possibility exists for farmers to be 
compensated for the carbon value of all or some land use types (e.g. AFOLU). 

o Different national land and forest use policies. Avoided deforestation 
policies may decree and enforce the protection of certain land types (e.g., 
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primary forests) that can be reflected in changes in the land use transition 
matrix. 

o Different carbon estimates. Increased accuracy or removal of systematic 
bias in carbon measurements (e.g., LIDAR, improved allometric equations or 
wood density estimates). 

o Different carbon prices. risk of permanence may affect carbon price, and 
market prices may fluctuate  

13. Scenarios introduce creative thinking about driving forces of land use change and 
their potential impact. Scenarios can create awareness about current and future land use, 
as well as serving as a synthesis tool, where different types of knowledge are combined in 
different formats, using both quantitative and qualitative information/methods. For 
example, local knowledge on the driving forces of deforestation is key for scenarios to be 
credible and plausible.  Scenarios can also help identify potential threats, uncertainties, 
conflicts, as well as opportunities that a community could be facing in the future. Key steps 
in scenario analysis include: 

1. Identification of actors involved (stakeholders) and selection of participants to the 
participatory scenarios exercise, 

2. Start the participatory scenarios process: Identification of focal questions including 
the goal / objectives of the analysis, 

3. Identification of context and driving forces of change,  
4. Develop the scenarios (storylines), 
5. Description of the scenario, possible causes and implications for parameter 

values (changes in C, P, or elements of the land use transition matrix) 
6. Analysis across scenarios: 

• Derivation of the opportunity cost estimate based on different 
scenarios  

• Comparison of results with the base scenario 
7. Map the results of the scenario and compare the map results for the base case. 
8. Interpretation of results and implications. 

 
14. A combination of tools and methods, quantitative and qualitative can be used at any of 
the stages in scenario development above. The process could be based on expert 
knowledge or be developed as a participatory process in which all actors are involved. 
While expert knowledge of parameters is likely to be easier, cheaper and faster at Tier 1 
level, expensive and comprehensive scenario modeling may be more appropriate at a Tier 
3 level. In some cases, it can be argued that the best way for determining priority 
parameters and their likely range is via a participatory process. The choice of methods 
depends on each country given the skills, capacity and the resources available.  
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Exercise: the effects of different REDD+ eligibility rules 
15. The spreadsheet Eligibility filter presents a quick analysis of how REDD rules will 
affect eligibility of different land use changes (in 
SpreadsheetExercisesREDDplusOppCosts.xlsm). Changes to the yellow highlighted cells 
reveals REDD+ policy effects on 11 categories of land use. 

16. Given that no clear rules exist for REDD+, examining their potential effect is useful for 
national policy planning. Although discussions point toward agreement on conservation, 
sustainable management of forests and enhancement of forest carbon stocks as being 
eligible within REDD+, clarification on the eligibility of specific land uses is still needed. 

17. Other issues include whether or not REDD+ will be part of National Appropriate 
Mitigation Actions (NAMA). If REDD+ becomes part of NAMA, then REDD+ policy would be 
equivalent to REDD++, AFOLU – Agriculture Forestry and Other Land Use or REALU –  
Reduced Emission from All Land Use, as described in the literature. 

18. Thus, four types of approaches, RED, REDD, REDD+ and REALU are possible outcomes 
of a UNFCCC policy agreement. The implication of eligibility conditions under these four 
versions can be illustrated by identifying appropriate parts of a land cover change matrix 
(Figure 9.2). 

o RED = Reducing emissions from (gross) deforestation: only changes from ‘forest’ to 
‘non-forest’ land cover types are included; details depend on the operational 
definition of ‘forest’ 

o REDD = RED + (forest) degradation, or the shifts to lower C-stock densities within 
the forest;  details depend on the operational definition of ‘forest’ 

o REDD+ = REDD, + restocking within and towards ‘forest’ ; in some versions RED+ 
will also include peatlands, regardless of their forest status; details still depend on 
the operational definition of ‘forest’ 

o REDD++ = REALU = AFOLU, all transitions in land cover that affect C storage, 
whether peatland or mineral soil, trees-outside-forest, agroforest, plantations or 
natural forest. No dependence on operational definition of ‘forest’ 

 
19. The approach to estimate opportunity costs within this manual could be selectively 
applied to any of the four versions. The eligibility filter works in conjuntion with the land 
cover change matrix that is used in the opportunity cost estimation.  
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Figure 9.2. Comparisons of eligible land use changes per RED to REALU rules 
Note: Land use change is from the initial state in the first column to a land use in one of the other columns. 
Eligibility of changes is indicated with colors (orange = permitted, blue = excluded) 
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Chapter 10. Conclusions and next steps 

Objectives 
1. Identify and discuss how to review and update the opportunity cost analyses, 

2. Discuss how to communicate the results, 

3. Present the next steps related to opportunity cost analysis and REDD+. 

 

1. This manual has presented a bottom-up approach for estimating the opportunity 
costs of REDD+.  The steps include: 

• Analyzing land use change and generating land use change matrices, 
• Estimating time-averaged carbon stocks of land uses, 
• Estimating the profitabilities of land uses, 
• Calculating opportunity costs and generating opportunity costs curves 
• Interpreting the cost curves and conducting sensitivity analysis   

2. In addition, the manual has presented how to: 

• Examine water and biodiversity co-benefits,  
• Identify and prioritize specific abatement options (land use change contexts) 

where co-benefits can substantially affect opportunity cost estimates, 
• Estimate the economic value co-benefits, 
• Review possible tradeoffs amongst carbon sequestration, biodiversity and 

water priorities. 
• Develop scenarios of future national development and conservation paths, 
• Examine the effects of different REDD+ eligibility rules,  

3. In this chapter we explain how to review and update an opportunity costs estimates, 
effectively communicate results and identify next steps for opportunity cost analysis 
within national REDD+ efforts. 
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What opportunity costs reveal, and what not? 
Opportunity costs are only one part of REDD+ costs 
4. Opportunity costs are only part of the costs of REDD+. For many countries, 
opportunity costs could be largest of REDD+ costs (see Figure 1.1). Hence, getting a full 
picture of costs requires estimating all other associated costs and constructing REDD+ 
supply curve. Nevertheless, the opportunity costs estimates of land use changes, described 
above, is a significant step to understanding the cost implications that come with REDD+ 
participation. 

The analysis is retrospective  
5. The methodology presented is based on actual land uses. Although these land uses 
may not adequately represent future, higher-value land uses, estimates of their opportunity 
costs provide a useful starting reference for further analysis and estimation. Profits from 
land uses depend largely on soil fertility, management practices and market access, each of 
which can be adjusted to reflect likely future circumstances. Furthermore, the effect of new 
technologies and associated land uses can also be explored. Such information will become 
available as more countries estimate opportunity costs. Countries can use such Tier 1 type 
of information to develop “new” land use trajectories within scenario analyses. 

No partial or general equilibrium effects are included 
6. The above method of opportunity cost analysis generates simple, tractable estimates 
of the cost of REDD+ programs to landowners. The approach, however, does not account 
for global feedbacks of REDD+ that will likely affect prices and costs across a broad 
spectrum of land uses and economic sectors.  

7. Additional analysis is required since the reach of REDD+ could be far. For example, 
global food and energy prices could be affected as the value of land rises. Such inter-
sectoral linkages between forestry, agriculture and energy (especially with respect to 
biofuels) will likely impact opportunity costs. While partial and general equilibrium models 
deal can better estimate such complex and indirect effect, the method in this manual can 
provide useful first approximations via scenario analyses, whereby prices of timber and 
agricultural products are raised in order to estimate the effect on opportunity costs. 

A qualitative valuation of co-benefits 
8. This study limits the valuation of co-benefits to qualitative measures within an 
analysis of trade-offs. Sophisticated and expensive valuations of water, biodiversity, scenic 
beauty, and other co-benefits would provide potentially more accurate estimates of REDD+ 
opportunity costs. Nevertheless, methods to quantitatively estimate such co-benefits are 
not without substantial limitations and costs. Qualitative assessments of co-benefits can 
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help policymakers identify priority areas and land uses for special consideration within 
REDD+ programs.  

Next steps 
Updating an opportunity cost analysis 
9. Since opportunity cost information can be time-sensitive, analyses should be updated 
periodically. National REDD+ analysis teams should review land use changes, technologies, 
management practices, carbon estimates and prices in order help ensure the validity of 
opportunity cost estimates.   

10. A second reason for updating the opportunity costs is related to the availability of 
analytical methods and data quality. For example, countries may start either at Tier 1, 2 or 
3 have. Depending on where a country starts, updates and improved accuracy may be 
achieved accordingly. Consider the following examples: 

1. A country begins an opportunity cost analysis at Tier 1, using default values 
and simple tools. The uncertainties of estimates are likely to be much higher, 
requiring that more data collected over time to improve accuracies. This is 
likely to be the case for most data-scarce developing countries within the 
FCPF and UN-REDD+ program.  

2. A country starts estimating opportunity costs using a combination of default 
values and representative data from the area / country concerned, thereby 
achieving Tier 2. Such countries will need to continue collecting more data on 
the ground in order to improve accuracies and build models in order to 
achieve Tier 3. 

3. A more developed country estimates opportunity costs at Tier 3 using 
complete and detailed data sets. Such countries will still need to update the 
estimates using updated prices, land use changes and policy changes. 

 
11. One question that arises is: when or how often should opportunity costs be updated? A 
quick answer would be it depends on the rate of change within the given analytical context 
(i.e., landscape or a country). Although some may argue for regular updates, the associated 
expenses, however, could be prohibitive. In addition, such a procedure could also lead to 
revisions of only a sub-set of data required (e.g. land use, carbon, profits). The mixing of 
newer with older information could bias a comparisons across opportunity cost estimates. 
Therefore, updates should be comprehensive.  

12. REDD+ policy and/or carbon markets may reward or even require updates of 
deforestation drivers and opportunity cost estimates. Such revised analyses could help 
identify pressures on forests potential areas of concern, such as where opportunity costs 
become significantly higher. These areas may require extra policy measures to assure 
compliance.  
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Communicating the results from opportunity costs analysis  
13. Effective communication tactics can help assure the use of opportunity cost estimates 
within the policy and decision-making arena. Since analytical methods and even the 
concept of opportunity costs itself can be difficult to understand, particular approaches 
within a range of options may be more effective. Such options include: 

1. Writing, printing and disseminating an executive summary of an opportunity 
cost report; 

2. Synthesizing the study into a policy briefs, which are published and widely-
distributed; 

3. Presenting results at different science-policy and stakeholder forums; 
4. Sharing results and their potential implications with popular media 

(newspapers, trade magazines, radio, television) 
5. Involving policy makers in the opportunity cost analysis. (Within a Tier 3 

context, modeling approaches of various policy scenarios can be 
collaboratively explored. For either a Tier 1 or 2 approaches, demonstrations 
and reviews of analytical results improve mutual understanding and help 
identify priority policies to develop and implement.) 

14. In the communication process, key discussion questions are important to identify and 
address, such as: 

a. Who are the likely winners and losers from REDD+? 
b. How large are the other costs of REDD+? How do they differ within the 

country and per land use change? 
c. At what price could most deforestation in the area be averted? 
d. Which areas and land uses will be most / least affected by REDD+? 
e. What aspects of the environment or the economy are likely to be most 

impacted by REDD+? 
f. Will REDD+ affect food and fiber production at the national level? 
g. What level of productivity increases must be achieved to offset production  

forgone from not expanding cultivate area? 
h. What national policies are needed to achieve reference emission levels in the 

future? 
 
15. The sharing of results and discussion of implications can help both policymakers and 
public understand the potential benefits and costs of REDD+ participation. Feedback from 
stakeholders could also improve the accuracy, precision and relevance of results.  
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A. Glossary 
Definitions to important words and terms: 
 

Above ground biomass. Biomass above the soil surface: trees and other vegetation. 

Accounting stance. The viewpoint from which costs and benefits are calculated. Typical 
accounting stances for analyzing  REDD+ initiatives are that of: an entire country,  
individual groups within a country, the government, and global community. 

Additionality. The reduction in emissions by sources or enhancement of removals by sinks 
attributable to a project/program activity.  
(Modified from Climate Change 2001: Mitigation. 
http://www.grida.no/climate/ipcc_tar/wg3/454.htm). 

Allometric equation. Scaling rule or equation that relates tree biomass (or similar 
properties) to stem diameter and/or tree height. 

Attribute table. A database or tabular file with information linked to distinct features 
shown on maps; can refer to points, lines or polygons in a vector GIS or grid cells in a raster 
GIS.   

Basal area. the cross section area of a tree stem in square cm commonly measured at 
breast height inclusive of bark (3.14 x radius2)  

Baseline. A reference scenario, the basis for comparison, against which a change in carbon 
stock/greenhouse gas emission or removal is measured (IPCC Special Report on Land Use, 
Land Use Change and Forestry. http://www.ipcc.ch/pdf/special-reports/spm/srl-en.pdf). 

Below ground biomass. Biomass below the soil surface: plant roots and other soil biota. 

Biomass. The total mass of living organisms including plants and animals for a given area 
usually expressed as dry weight in g m-2 or kg ha-1. Organic matter consisting of or recently 
derived from living organisms (especially regarded as fuel) excluding peat. Includes 
products, by-products and waste derived from such material. 

For most ecological research and for the purposes of this manual, "biomass" is a vegetation 
attribute that refers to the weight of plant material within a given area. Another commonly 
used term for biomass is "production" which refers to how much vegetation is produced in 
an area.  

Capital. Also known as financial capital. Money and savings.  

Carbon budget. The balance of the exchanges of carbon between carbon pools or within 
one specific loop (e.g., atmosphere –biosphere) of the carbon cycle. 

Carbon dioxide equivalent. A measure used to compare different greenhouse gases based 
on their contribution to radiative forcing. The UNFCCC (2005) uses global warming 
potentials (GWPs) as factors to calculate carbon dioxide equivalent. 

http://www.grida.no/climate/ipcc_tar/wg3/454.htm
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Carbon stocks.  Total carbon stored (absolute quantity) in terrestrial ecosystems at a 
specific time, as living or dead plant biomass (above and below-ground) and in the soil, 
along with usually negligible quantities as animal biomass. The units are Mg ha-1. 

Carbon pool. A reservoir or subsystem which has the capacity to accumulate or release 
carbon.  Examples of carbon pools are forest biomass, wood products, soils and the 
atmosphere. The units are mass (kg ha-1 or Mg ha-1). 

Carbon sequestration. The process of increasing the carbon content of a carbon pool 
other than the atmosphere. 

Charcoal . Blackish residue, porous, consisting of impure carbon (about 85-90% C) 
obtained by removing water and other volatile constituents of animal and plants 
substances. It is usually produced by heating wood in the absence (or at low levels) of 
oxygen.  

Classification system. A framework to arrange objects into groups, called classes, on the 
basis of characteristics. Classifications are based on criteria used to distinguish classes and 
the relationship between them. The definition of class boundaries should be clear, precise, 
possibly quantitative, and based upon objective criteria (FAO LCCS handbook, 2000). 

Country-specific data. Data for either activities or emissions that are based on research 
carried out on sites either in that country or otherwise representative of that country. 

Discount rate. A rate reflecting a time-preference at which the value future profits are 
reduced in a multi-period analysis. 

Emissions. The release of greenhouse gases and/or their precursors into the atmosphere 
over a specified area and period of time (UNFCCC Article 1.4). 

Enterprise budget. A detailed accounting of revenues and expenses related to a business 
(e.g. land use) activity.  

Good Practice. A set of procedures intended to ensure that greenhouse gas (GHG) 
inventories are accurate in the sense that they are systematically neither over- nor 
underestimates so far as can be judged, and that uncertainties are quantified and reduced 
so far as possible. Good Practice covers choice of estimation methods appropriate to 
national circumstances, quality assurance and quality control at the national level, 
quantification of uncertainties and data archiving and reporting to promote transparency. 

Ground truth. A remote sensing term referring to the actual condition of the Earth surface 
as determined by field visits. 

Land cover. The classification of the biophysical surface of the Earth, comprising 
vegetation, soils, rocks, water bodies and areas built by humans.  

Land use (LU). The classification of human activities, occupation and settlement of the 
land surface; e.g., annual crops, tree crops, plantations, urban, conservation area, etc.  

Land use legend. The key to features in a classification system on a map, expressing each 
class as distinct colors, patterns or descriptions. In this manual, classes and sub-classes in a 
land cover legend to are matched with LUs. 

http://www.fao.org/docrep/003/X0596E/X0596e00.HTM
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Land use classification system. A framework for organizing land uses according to 
characteristics that differentiate them and make them unique (forests, agriculture, 
pastures, urban, etc) 

Land use system (LUS). Dynamic characteristics and interactions in activities across space 
and time on the Earth surface. The word system refers to sequential cyclical changes that 
are part of a land use, such as the crop/fallow rotation in shifting cultivation systems. For 
the sake of brevity, the term land use is employed throughout the manual 

Landscape. A non-exact area of land. A portion of land or territory which the eye can 
comprehend in a single view, including all the objects it contains. 

Leakage.  Changes in emissions and removals of greenhouse gases outside the accounting 
system that result from activities that cause changes within the boundary of the accounting 
system. There are four types of leakage: activity displacement, demand displacement, 
supply displacement, and investment crowding. If leakage occurs, then the accounting 
system will fail to give a complete assessment of the true aggregate changes induced by the 
activity. (IPCC Special Report on Land Use, Land Use  Change and Forestry. 
http://www.ipcc.ch/pdf/special-reports/spm/srl-en.pdf ) 

Minimum mapping unit (MUU). The smallest homogeneous area, or unit, that can be 
distinguished from remote sensing data and associated map. The MMU is dependent on the 
resolution of the imagery. Higher image resolution enables smaller, precise MMUs.  

Mixed mapping unit. A mapping unit that represents a combination of LUS units. Because 
of insufficient spatial resolution, units are combined into a class that represents two or 
more land covers or land uses. 

Mortality/ Tree mortality. Dead trees per area. 

Necromass  or Dead Organic Matter. The weight of dead organisms, usually expressed as 
g m-2 or kg ha-1. Necromass consists mainly of plant litter. It is usually on the soil surface or 
in the soil, but some may take the form of standing or attached dead material. Much of the 
transient or lag in response to rapid climate change by forest ecosystems can be estimated 
by the difference between tree regeneration (tree natality) and tree mortality. Annual 
necromass increments result from individual tree mortality within stands and from larger-
scale disturbance and dieback events (fires, insect infestations, disease infestations, wind 
throw). In addition, a significant portion of the carbon stocks which comprise stored 
terrestrial carbon of forest and non-forest communities is in the form of necromass.  

Net present value (NPV). The present value of an investment's future net cash flows 
minus the initial investment. 

Net returns. See profit. 

Organic matter (or organic material). Matter that has come from a once-living organism; 
is capable of decay, or the product of decay; or is composed of organic compounds. 

Peatland. Peatland is the land rich in partly decomposed plant remains, with organic C of 
>18% and thickness of >50 cm. Peatland  is intrinsic to many wetlands around the world. 
The tropical peat is about 1 to 7 m thick and at places it can be 20 m thick.  Moss, grass, 
herbs, shrubs and trees may contribute to the buildup of organic remains, including stems, 

http://biology-online.org/dictionary/Portion
http://biology-online.org/dictionary/Land
http://biology-online.org/dictionary/Territory
http://biology-online.org/dictionary/Eye
http://biology-online.org/dictionary/Single
http://biology-online.org/dictionary/View
http://biology-online.org/dictionary/Objects
http://www.ipcc.ch/pdf/special-reports/spm/srl-en.pdf
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leaves, flowers, seeds, nuts, cones, roots, bark and wood. Peat forms in wetlands or 
peatlands, variously called bogs, moors, muskegs, pocosins, mires, and peat swamp. 
Through time, the accumulation of peat creates the substrate, influences ground-water 
conditions, and modifies surface morphology of the wetland.  

Permanence.  The longevity of a carbon pool and the stability of its stocks, given the 
management and disturbance environment in which it occurs. 
http://www.ipcc.ch/pdf/special-reports/spm/srl-en.pdf  

Profit. Net returns, or revenues minus costs. 

Raster GIS. represents the Earth surface as a grid of cells of uniform area, each holding 
information on characteristics of its respective geographic area; useful for continuous data 
such as satellite imagery or climate and elevation surfaces. 

Removals. Removal of greenhouse gases and/or their precursors from the atmosphere by 
a sink. 

Rent. Also known as economic rent or producer surplus. The value that producers obtain  
when actual price exceeds the minimum price sellers will accept. In a REDD+ context, rent 
is the different between the international price of carbon and REDD+ costs. 

Resolution.  See spectral and spatial. 

Sink. Any process, activity or mechanism which removes a greenhouse gas, an aerosol, or a 
precursor of a greenhouse gas from the atmosphere. (UNFCCC Article 1.8). Notation in the 
final stages of reporting is the negative (-) sign. 

Soil organic matter (SOM).  Mass of soil organic matter in a unit dry mass of soil. It’s often 
expressed in % by weight. 

Soil organic carbon.  Mass of carbon in a unit dry weight of soil, often expressed in % by 
weight. Unless measured directly, soil organic carbon is assumed 1/1.724 of soil organic 
carbon.    

Soil bulk density. Oven-dry mass of soil in a unit volume of bulk soil (including the 
volumes of solid soil and soil pores).  

Source. Any process or activity which releases a greenhouse gas, an aerosol or a precursor 
of a greenhouse gas into the atmosphere (UNFCCC Article 1.9). Notation in the final stages 
of reporting is the positive (+) sign. 

Spectral resolution. Refers to the capacity of airborne or satellite remote sensing systems 
to detect surface features across a range of the electromagnetic spectrum. High spectral 
resolution generally improves the capacity to characterize the surface. 

Spectral signature. The unique way in which a given type of land cover reflects and 
absorbs light. 

Spatial resolution. The size of pixels or grid cells that represent areas on the Earth 
surface. High spatial resolution permits the identification of more detailed objects on the 
surface.  

http://www.ipcc.ch/pdf/special-reports/spm/srl-en.pdf
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Standing litter.  The amount of litter weight at a given time. Usually refers to the amount 
of litter found at soil surface.  

Understory. Any plants growing under the canopy formed by other plants, particularly 
herbaceous and shrub vegetation under a tree canopy. 

Vector GIS. represents geographic features on digital maps as points, lines or polygons. 

Wood density. Wood density is the oven-dry weight of a given volume of wood, usually 
expressed as kg dm-3.  

Wetland.  Land where an excess of water is the dominant factor determining the nature of 
soil develop. 
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B. Required capacities for a national monitoring system of emissions 
Table 11.1.  Capacities required per phase 

Phase Requirement Capacities  

Pl
an

ni
ng

 a
nd

 d
es

ig
n 

1.  Forest 
monitoring system 
as part of a national 
REDD+ 
implementation 
strategy   

• Knowledge of international UNFCCC process on REDD+ and of 
guidance for monitoring and implementation  
• Knowledge of national implementation strategy and objectives for 
REDD+  

2.  Assessment of 
existing national 
forest carbon 
monitoring 
framework and 
capacities, and 
identification of 
gaps in existing data 
sources  

• Understanding of estimation and reporting guidance provided in the 
IPCC Good Practice Guide and any other relevant guidance under the 
Convention 
• Synthesis of previous national and international reporting, if any (i.e. 
national communications and the Food and Agriculture Organization of 
the United Nations Forest Resources Assessment)  
• Expertise in estimating  terrestrial carbon stocks and related human 
induced changes, and monitoring approaches 
• Expertise to assess usefulness and reliability of existing capacities, 
data sources and information  

3.  Design of a forest 
carbon monitoring 
system driven by 
UNFCCC reporting 
requirements, with 
objectives for 
historical period 
and future 
monitoring  

• Detailed knowledge of the application of methodologies in the IPCC 
Good Practice Guide and any other relevant guidance under the 
Convention 
• Agreement on definitions, reference units, and monitoring variables 
and framework 
• Institutional framework specifying roles and responsibilities 
• Capacity development and long-term improvement planning 
• Cost estimation for establishing and strengthening institutional 
framework, capacity development, and actual operations and budget 
planning 

D
at

a 
co

lle
ct

io
n 

an
d 

m
on

ito
ri

ng
 

4.  Forest area 
change assessment 
(activity data)  

• Reviewing, consolidating and integrating the existing data and 
information 
• Understanding of deforestation drivers and factors, and management 
practices 
• If historical data records are insufficient, particularly with the use of 
remote sensing, the following capacities are required:  
-  Expertise and human resources in accessing, processing and 
interpretation of multi-date remote sensing imagery for forest area 
changes 
-  Technical resources (hardware/software, Internet, image database) 
-  Approaches for dealing with technical challenges (i.e. cloud cover, 
missing data) 

5.  Changes in 
carbon stocks 
(emission factors)  

• Understanding of human-induced processes influencing terrestrial 
carbon stocks 
• Consolidation and integration of existing observations and 
information, that is, national forest inventories or permanent sample 
plots involving: 
-  National coverage and stratification of forests by carbon density and 
threat of change 
-  Conversion to carbon stocks & estimates of carbon stock change 
• Technical expertise and resources to monitor carbon stock changes, 
including: 
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-  In situ data collection of all the required parameters, and data 
processing 
-  Human resources and equipment to carry out fieldwork (vehicles, 
maps of appropriate scale, global positioning system, measurement 
units) 
-  National inventory & sampling (sample design, plot configuration) 
-  Detailed inventory of areas of forest change or REDD+ action. 
-  Use of remote sensing (stratification, biomass estimation) 
•  Estimation at sufficient IPCC tier for: 
-  The estimation of carbon stock changes due to land-use change 
-  The estimation of changes in forest land remaining forest land 
-  The consideration of the impact on five different carbon pools 

6.  Emissions from 
biomass burning  

• Understanding of national fire regime and related emissions of 
different greenhouse gases 
• Understanding of slash slash-and and-burn cultivation practices and 
knowledge of the areas where this is being practiced 
•  Fire monitoring capabilities to estimate areas affected by fires caused 
by humans and associated emission factors 
•  Use of satellite data and products for active fire and area burned 
• Continuous in situ measurements (particularly emission factors) 
•  Separating fires leading to deforestation from degradation 

7.  Accuracy 
assessment of 
activity data and 
uncertainty analysis 
of emission factors 
 

• Understanding of sources of error and uncertainties uncertainty in the 
assessment process of both activity data and emission factors, and how 
errors propagate 
• Knowledge of the application of best efforts using appropriate design, 
accurate data collection processing techniques, and consistent and 
transparent data interpretation and analysis 
•  Expertise on the application of statistical methods to quantify, report 
and analyze uncertainties for all relevant information (i.e. area change, 
change in carbon stocks, etc.) using, ideally, a higher-quality sample  

D
at

a 
an

al
ys

is
 

8.  National 
greenhouse gas 
information system  

• Knowledge of techniques to gather, store, archive and analyze data on 
forests and other data, with the emphasis on carbon emissions and 
removals from changes in forest area 
• Data infrastructure, information technology (suitable hardware/ 
software) and human resources to maintain and exchange data, and 
quality control 
• Data access procedures for (spatially explicit) information presented 
in a transparent form 

9.  Analysis of 
drivers and factors 
of forest change 
 

• Understanding and availability of data for spatial-temporal processes 
affecting forest change, socio-economic drivers, spatial factors, forest 
management and land-use practices and spatial planning 
•  Expertise in spatial and temporal analysis and use of modeling tools  

Re
fe

re
nc

e 
em

is
si

on
 

le
ve

ls
 10.  The 

establishment of 
reference levels of 
emissions, which is 
regularly updated  

•  Data and knowledge of processes relating to REDD+ , associated 
greenhouse gas emissions, drivers and expected future developments 
•  Expertise in spatial and temporal analysis and modeling tools 
•  Specifications for a national implementation framework for REDD+  

Re
po

rt
in

g 11.  National and 
international 
reporting and 
verification  

Consideration of uncertainties and understanding procedures for 
independent international review and verification 

Source: UNFCCC, 2009. 
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C. Allometric equations  
 
Table 11.2. Tropical allometric equations 
Note: BA= basal area 
 

General 
classification Species Group Equation Source 

Data 
originating 

from 

Max dbh 
 

Dry 
(900–
1500mm 
rainfall)  
 

General Biomass = 0.2035 x 
dbh2.3196 

Brown 
(unpublished) 

 63cm 
 

Dry 
(< 900mm 
rainfall) 

General Biomass = 10(-

0.535+log10basal area) 
Brown (1997) Mexico 30cm 

Moist 
(1500–
4000mm 
rainfall)  
 

General Biomass = exp(-
2.289+2.649 x 
lndbh-0.021 x 
lndbh2) 

Brown (1997, 
updated) 

 148cm 

Wet 
(> 4000mm 
rainfall)  

 Biomass = 21.297 – 
6.953 x dbh+ 0.740 
x dbh2 

Brown (1997)  112cm 

Cecropia  Cecropia 
species 

Biomass = 12.764 + 
0.2588 x dbh2.0515 

Winrock Bolivia 40cm 

Palms  Palms 
(motacu)  

Biomass = 23.487 + 
41.851 x  
(ln(height))2  
 

Winrock  Bolivia 11m 
height 

Lianas Lianas Biomass = 
exp(0.12+0.91 x 
log(BA at dbh)) 
 

Putz (1983) Venezuela 
 

12cm 
 

Source: Pearson, et al., 2005.  
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Table 11.3. Agroforestry allometric equations 
Note: BA = basal area. 
 

General 
classification Species Group Equation Source 

Data 
originating 

from 

Max dbh 
 

Agroforestry 
Shade Trees 

All Log10Biomass = -0.834 + 
2.223 (log10dbh) 

Segura et al. Nicaragua 44cm 
 

Agroforestry  
Shade Trees  
 

Inga spp. Log10Biomass = -0.889 + 
2.317 (log10dbh) 

Segura et al. Nicaragua 44cm 

Agroforestry  
Shade Trees  
 

Inga 
punctata 

Log10Biomass = -0.559 + 
2.067 (log10dbh) 

Segura et al. Nicaragua 44cm 

Agroforestry 
Shade Trees  
 

Inga tonduzzi Log10Biomass = -0.936 + 
2.348 (log10dbh)  

Segura et al. Nicaragua 44cm 

Agroforestry  
  
 

Juglans 
olanchama 

Log10Biomass = -1.417 + 
2.755 (log10dbh) 

Segura et al. Nicaragua 44cm 
 

Agroforestry 
Shade Trees 

Cordia 
alliadora  

Log10Biomass = -0.755 + 
2.072 (log10dbh) 
 

Segura et al. Nicaragua 44cm 
 

Shade grown  Coffea 
arabica  

Biomass = exp(-2.719 + 
1.991 (ln(dbh))) (log10dbh)  
 

Segura et al. Nicaragua 8cm 

Pruned coffee  Coffea 
arabica  

Biomass = 0.281 x dbh2.06  van 
Noordwijk et 
al. (2002)  
 

Java, 
Indonesia 

10cm 

Banana  Musa X 
paradisiaca  

Biomass = 0.030 x dbh2.13  van 
Noordwijk et 
al. (2002)  
 

Java, 
Indonesia 

28cm 
 

Peach palm  Bactris 
gasipaes  

Biomass = 0.97 + 0.078 x BA 
– 0.00094 x BA2  
+ 0.0000065 x BA3  
 

Schroth et al. 
(2002) 
 

Amazonia  
 

2–12cm 
 

Rubber trees  Hevea 
brasiliensis  

Biomass = -3.84 + 0.528 x BA 
+ 0.001 x BA2  

Schroth et al. 
(2002) 
 

Amazonia  
 

6–20cm 

Orange trees  Citrus 
sinensis  

Biomass = -6.64 + 0.279 x BA 
+ 0.000514 x BA2 

Schroth et al. 
(2002) 
 

Amazonia  
 

8–17cm 

Brazil nut 
trees  

Bertholletia 
excelsa  

Biomass = -18.1 + 0.663 x BA 
– 0.000384 x BA2 

Schroth et al. 
(2002) 
 

Amazonia  
 

8–26cm 

Source: Pearson, et al., 2005.  
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D. Steps to calculate time-averaged carbon stock: from plot to land 
use  
 
Main output: Time-averaged C stock per land use (Mg ha-1). 
 
For monoculture systems 

• Select plots of different ages of trees.  
• Tree level: Measure trees by following the sample protocol/methods in Hairah et al, 2010. 

Calculate tree biomass by using the right allometric equation by species if possible, using 
the criteria described in this module.  
Output 1: Biomass per tree (Kg), extrapolate to Mg C ha-1 
Output 2: Root biomass estimated using default value 4:1 (shoot/root ratio) 
Output 3: C biomass (Output 1 + Output 2) x 0,46 = C (Mg C ha-1) 

• Plot level: Measure necromass and soil organic matter as explained in Hairah et al, 2010.  
Output 4: C Necromass (Mg ha-1) x 0,46 = C (Mg C ha-1) 
Output 5: C Soil organic matter (Mg ha-1) x 0,47 = C (Mg C ha-1) 

• Sum up outputs 3, 4 and 5 to calculate total C stock per hectare. (Mg ha-1) 
• Land use: Develop the total C stock equation for the monoculture per life cycle (see Figure 

2-1). Find the value of the median C stock. This is the time-averaged C stock for the species 
(in the monoculture).  

 
For a Mahogany plantation  
Example: 20 trees of mahogany of different ages (5, 15, 25 and 30 years old) are found in one plot of 
200m2 of land use type A. The farmer informed us that Mahogany is harvested when it is about 50 
years old. What is the time-average C stock for Mahogany in this case?  
 
Step 1. Use the most suitable allometric equation for Mahogany and calculate the biomass (Mg ha-1) 

for each tree.  
Step 2. Transform biomass to total C by multiplying it by 0,46. Calculate the value per hectare. 
Step 3. Add the necromass and soil organic matter estimations to the biomass per hectare. 

Transform them to total C by multiplying them by 0,46.  
Step 4. Calculate total C by age (biomass, necromass and soil organic matter).  
Step 5. Calculate the total C regression curve for Mahogany-monoculture system as in Figure 11.1. 

Note that it includes biomass, necromass and soil organic matter for each age group.  
Step 6. If the trees would be harvested when 50 years old as expressed by the farmer, then we take 

the median of total C calculated with the equation at year 25 as the time-average carbon 
stock for this monoculture. This value is about 150 Mg C ha-1. 
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Figure 11.1.  Carbon stock changes in Mahogany-monoculture system, East Java 
 
For mixed systems such as agroforestry 

• Select plots of different stages within the same land use after forest conversion.  
• Tree level: Measure all trees within the sampling plot by following the sample 

protocol/methods in Hairah et al, 2010. Calculate tree biomass by using the right allometric 
equation by species if possible.  
Output 1: Biomass per tree (Kg per tree), extrapolate to (Kg ha-1) 
Output 2: Root biomass estimated using default value 4:1 (shoot/root ratio), (Kg ha-1) 
Output 3: C biomass (Output 1 + Output 2) x 0,46 = C (Mg C ha-1) 

• Plot level: Measure necromass and soil organic matter as explained in Hairah et al, 2010.  
Output 4: C Necromass (Mg ha-1) x 0,46 = C (Mg C ha-1) 
Output 5: C Soil organic matter (Mg ha-1) x 0,46 = C (Mg C ha-1) 

• Land use level: Sum up outputs 3, 4 and 5 to calculate total C stock per hectare in the mixed 
land uses per age of plot after forest conversion:  

o 3 years 
o 15 years 
o 40 years 

• Calculate the average of total C stock of the three ages. This would be the time-averaged C 
stock of a mixed land use. The reason we do not use total C curves as per the monoculture 
case is the diversity of species and ages found in mixed systems.  

 
For example: The total C in an agroforestry system of 3 year old is 15 Mg C ha-1, for 15 year old 
is 40 Mg C ha-1 and 40 years old is 80 Mg C ha-1. Time-averaged C stock would be (15+40+80)/3 
= 45 Mg C ha-1.  
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E. Methods to estimate the economic value of biodiversity 
1. The Convention on Biological Diversity (CBD) recognizes the importance of economic 
valuation, and states that economic valuation of biodiversity and biological resources is an 
important tool for well-targeted and calibrated economic incentive measures (CBD, 1998). 
Economic valuation, based on sound theoretical foundations, can help clarify tradeoffs 
facing public policy decisions. Nevertheless, exceptions exist for prioritizing economic 
values over other cultural, traditional and spiritual values. Since numerous methodological 
limitations and moral questions regarding the rigor of economic valuation persist, non-
economic values need to be recognized and addressed. 

2. At the core of the debate are conflicting views regarding the concept of value. 
Philosophies clash. For some, the wants of the people are morally justified – costs may 
seem little or not even be considered. Priorities are to be identified through political 
process. For others, costs are relevant since they represent alternative use of funds. 
(Prioritization of alternative uses also has moral implications.) For people of such a 
perspective, priorities are best clarified through procedures such and benefit-cost analysis 
and multi-criteria analysis in order to inform decisions. Whichever viewpoint, a consensus 
prevails on the importance of conserving biodiversity while considering the associated 
costs (OECD, 2002). 

3. Achieving cost-effectiveness is not straightforward. Conservation policies are often 
weighted down by attempts to deliver multiple outcomes. Two approaches are commonly 
used to identify priorities: (a) the use of money or price weights, which define benefit-cost 
relations, or (b) the calculation of scores, typically derived from experts or public opinion.  

4. Both types of analysis produce measures to reveal the importance of biodiversity. 
Nevertheless, the determination of monetary values enables biodiversity conservation to 
compete on the same standardized basis against other demands for public funding. Below 
are outlined numerous approaches to estimate the economic value of biodiversity.  

5. Despite the role of important economic measures, the participation of numerous 
stakeholders is often central to public decision-making processes. Deliberative and 
inclusive approaches that identify social preferences are an increasingly popular approach 
as governments respond to calls citizen involvement, consultations and recognition in 
policy decisions. Scientific information is typically provided in order to inform the 
participants in deliberation and decision processes. Resulting negotiation and/or 
consensus can be perceived as a better or fairer reflection of social preferences than 
benefit-cost analysis. Although results from public participation can reflect biases, insights 
gained from wider discussion and involvement can permit a more comprehensive socio-
economic analysis for policy decisions when combined with benefit-cost approaches 
(OECD, 2002). 
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6. Efforts to estimate the economic values of biodiversity at spatial scale are being 
advanced (Wünsher, et al. 2008; Wendland, et al. 2009), including those by Conservation 
International (CI) and other NGOs. Future maps on biodiversity benefits can incorporate 
the total economic value, with an assessment of direct and indirect use values (concept 
presented below). Benefits transfer methods, which involve taking economic values from 
one context and applying them to another, could potentially be used to help establish these 
values, where site-specific analyses do not exist. Nevertheless, analyses are still likely to be 
a data and time-intensive (Karousakis,  2009). Furthermore, the validity of benefit transfer 
methods can be suspect. 

7. Economic values of biodiversity are derived from the preferences that people have for 
the functions of biodiversity. Since market prices rarely exist for biodiversity function, 
preferences are estimated via willingness to pay (WTP) in order to secure or retain 
functions. One advantage of this approach is that the benefits of biodiversity are expressed 
in monetary units, thereby enabling direct comparison with alternative actions.  

8. The sum of the WTPs, of all relevant people affected by a due to a policy or project, is 
the total economic value representing the change in well-being. Total economic value 
consists of use values and non-use values (Figure 11.2). Use value refers to the value 
arising from an actual use of a given resource. Examples include use of forest for timber, or 
of a lake for recreation or fishing, and so on. Use values are further categorized into three 
types. One, direct use value, which refers to actual uses such as fishing, timber extraction, 
etc. Two, indirect use value, which concerns the benefits deriving from ecosystem 
functions. For example, the function of forests in protecting watersheds. Three, future 
option values represent an individual's willingness to pay to safeguard an asset for the 
option of using it at a future date.  

9. Non-use values are more problematic in definition and estimation. Non-use values are 
comprised of bequest value and existence value (see Arrow et al, 1993). Bequest value is 
the benefit accruing to any individual from the knowledge that others might benefit from a 
resource in future. Existence value derives simply from the existence of any particular 
asset, and is unrelated to current use or option values. An example is individual's concern 
to protect the snow leopard although he or she has never seen one and is never likely to. 
Just knowing that leopards exist is the source of value. Altruistic value reflects the concern 
that the biodiversity is available for others. 
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Figure 11.2. Economic values attributed to environmental assets 
10. Differentiating between use and non-use values is helpful for estimating the value of 
biodiversity. Non-use values are can be much larger than use values, especially when the 
species or ecosystem is rare and widely valued (e.g., charismatic species and ecosystems). 
Nevertheless, estimates of non-use values can be controversial; therefore it is beneficial to 
separate these values for presentational and strategic purposes. 

11. An array of methodologies is available for eliciting and estimating economic values.79 
They can be divided into three broad approaches. One, the stated preferences or direct 
approach comprises techniques that attempt to elicit preferences directly by the use of 
surveys and experiments, such as the contingent valuation and choice modeling methods. 
People are asked directly to state their strength of preference for a proposed change.  

12. Two, the revealed preferences or indirect approaches are techniques which seek to 
elicit preferences from actual, observed market-based information. Preferences for the 
environmental good are revealed indirectly when an individual purchases a marketed good 
to which the environmental good is related. In other words, revealed preference methods 
use observed behavior to infer the value. Since these techniques do not rely on people's 
direct answers to questions about how much they would be willing to pay for an 
environmental quality change, value biological resources instead of biodiversity. 

                                                        
79 Although much of the world's threatened biological diversity is in the developing world, the theory and 
practice of economic valuation has been developed and applied mainly in the industrialized world. 
Consequently, it is important to assess if rich country methodologies can be applied in poor country contexts 
(Pearce and Moran, 1994). 

Total 
Economic 
Value 
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Figure 11.3. Valuation methods for biological diversity and resources 
13. Three, benefit transfer borrows an estimate of WTP from one site or species for use in 
a different context. Although fraught with methodological difficulties (e.g., reliability and 
validity), transferring benefit estimates is appealing. Avoidance of a detailed benefit study 
can save considerable resources for funders and agencies implementing environmental 
projects. developed countries, such savings are motivating interest in an analysis of 
appropriate conditions for transferring estimates (Boyle and Bergstrom, 1992). 

14. Details on the above are available in numerous publications. For more information see 
OECD (2002), Arrow, 1993, Pearce and Moran (1994). Issues of applicability and validity 
continued to be refined in the scientific literature. 
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F. Spreadsheet examples 
15. This appendix contains pertinent sections of computer spreadsheets described in 
Chapters 7 and 9.  

Figure 11.4, OppCost Spreadsheet (a): example inputs and outputs (Chapter 7) 

 
 

Opportunity cost estimate worksheet (national level)
Data inputs:  Outputs: 
1. Land uses (LU) initial & changes 1. Final land use estimates
2. C stock per LU 2.Opportunity cost curve
3. Profit per LU 3. National level summary 
4. Workdays per LU

All numbers in yellow cells are parameters that you can change

Land use legend

Time-averaged C 
stock 

Profit-ability Employment 

(Mg C/ha) (NPV, $/ha) (workdays/year)
Natural forest 250 30 5
Logged forest 200 300 15
Agro-forestry 80 800 120
Extensive agriculture 10 600 100

Period of analysis 30 years
Size of country 2,000,000 km2
Total population 1,000,000
Pop working age 60%
Workdays / year 230 days
 
Performance at national scale:
Total LU-based emission, Pg CO2e/yr 0.00
Total C stock in land use, Pg C 34.00
Total NPV of land uses (M$) 60,400
Total rural employment 0.56
Emissions as percentage of C stock 0.0

(vertical axis)
Opportunity costs of land uses changes: $ per tCO2
Initial    \ Final Natural forest Logged forest Agro-forestry Extensive agriculture

Natural forest 0.00 1.47 1.24 0.65
Logged forest -1.47 0.00 1.14 0.43
Agro-forestry -1.24 -1.14 0.00 0.78
Extensive agriculture -0.65 -0.43 -0.78 0.00
Carbon 250 200 80 10
NPV Profits 30 300 800 600
(horizontal axis)
Emissions, Tg CO2e/yr
Natural forest 0.0 305.6 0.0 0.0
Logged forest 0.0 0.0 293.3 928.9
Agro-forestry 0.0 0.0 0.0 0.0
Extensive agriculture 0.0 0.0 -171.1 0.0
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Figure 11.5, OppCost Spreadsheet (b): example inputs and outputs (Chapter 7) 

 

Land use distribution

Land use change 
matrix

Final landuse Natural 
forest Logged forest Agro-forestry

Extensive 
agriculture

Inconsis-
tency 
check

Initial landuse 15% 25% 30% 30%
Natural forest 40% 15% 25% 0% 0% 0.0%
Logged forest 30% 0% 0% 10% 20% 0.0%
Agro-forestry 10% 0% 0% 10% 0% 0.0%
Extensive agriculture 20% 0% 0% 10% 10% 0.0%

LU change (%/year) 100% 2.1 1.3 0.8 0.8

Original

Scenario 2 Logged forest $300 -> $400 NPV/ha
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G. Example analysis using REDD Abacus 
16. On the REDD Abacus website (www.worldagroforestry.org/sea/projects/ 
allreddi/softwares), a sample file representing a context in Indonesia (Project Examples–
Project.car file) can be examined within the REDD Abacus program (downloadable on the 
same website). To open, click File on the Toolbar, then click Open Project. A dialogue box 
opens for files stored on the computer.  The file is called: sample_project.car. When 
opened, a reviewing pane is on the left of the screen, which shows one’s location within the 
program. On the right section of the screen is a box for data entry and of results. 

Data entry 
17. The first screen (test1) is a context description of the analysis – which can either be a 
sub-national project or national program. The right box contains subsections with the 
Project label, Description, Time Scale (Year) and an option of including belowground 
emissions. Two other subsections are for the Zone Partition and Land Cover List. The Zone 
Partition contains a box to enter the Size of the Total Area (ha). Each identified Zone is a 
fraction of the Total Area, in decimal terms, and can be classified (via a checkmark) as 
being eligible or not within a REDD policy scenario. The Land Cover List is where the names 
of the land covers are entered, along with a brief description (if needed). Each of land 
covers can be identified as either eligible or ineligible within a REDD policy scenario. The 
(+) adds an addition land cover to the list, while the (–) erases the highlighted cover. The 
sample_project example has 4 zones and 20 land covers (Figure 11.7).  

 
Figure 11.7. Context description screen of REDD Abacus example 

http://www.worldagroforestry.org/sea/projects/%20allreddi/softwares
http://www.worldagroforestry.org/sea/projects/%20allreddi/softwares
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18. If starting a new file, a series of dialogue boxes will prompt the user for information 
on: 

• title 
• description  
• number of zones 
• total area 

19. The second screen, Time-averaged C-stock, accepts data for each of the land uses per 
zone (Figure 11.8). For the example, 20 land uses in the 4 zones requires carbon data 
(t/ha) for 80 different land use contexts. 

 

 
Figure 11.8. Time-averaged carbon stock of REDD Abacus example 
 
 
20. Profit data from land uses are entered in the third screen (in NPV - net present value 
per hectare). Profit levels can differ according to accounting stance (sectors being: private 
or social) in addition to the distinct zones. Although the discount rate is typically a major 
difference between the two stances, the example employs the same rate for both.  (Private 
sector typically has a higher discount rate given the time value of money corresponding to 
a prevailing interest rate.) In the example, all social NPVs are higher than private NPVs - 
except for the rice field land cover.  The lower social NPV of rice fields is the result of a 30% 
government tariff policy on rice imports, which artificially inflates the farm gate price of 
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rice. In contrast, export taxes on oil palm and rubber depress the prices that farmer receive, 
thus the social NPVs are higher than the private NPVs (Figure 11.9). 

  
Figure 11.9. NPV estimates  for REDD Abacus example 
 
21. The fourth screen, Conversion Cost-Benefit, allows the user to include the per hectare 
cost-benefit associated with each land use change. In other words, the NPVs given up when 
converting one specific land use into another, e.g., converting (clearing) of undisturbed 
forest implies US$ 1,066 US$/ha of forgone profits. 

22. The fifth screen, Transition Matrix, is a summary of each type of land use change 
within the area of analysis (Figure 11.10). This is the same as the Land use change matrix, 
mentioned within this manual (in Chapter 4). Each cell represents the fraction of change 
per sub-national Zone. (The sum of all cells is equal to 1.) As can be seen in the example, 
although 400 different land use changes are possible, changes did not occur for all land use 
covers.  
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Figure 11.10. Transition matrix for REDD Abacus example 
 
23. The sixth screen, Belowground Emissions, provides a way to examine the effects of 
including belowground carbon pool of different land uses within an opportunity cost 
analysis. Belowground emissions or sinks, which typically occur at a slower rate, can be 
substantial, especially in peatlands.  

 

Analysis results 
24. The Output summary screen presents results from the opportunity cost analysis. The 
program calculates carbon emissions, sequestration and eligible emission (according to the 
REDD policy selected). The six summary results include: Average Emission per hectare per 
year (Mg CO2e/ha/year), Total emission per year (Mg CO2e/ha/year), Average sequestration 
per hectare per year (Mg CO2e/ha/year), Total sequestration per year (Mg CO2e/year), 
Average Eligible Emission per hectare per year (Mg CO2e/ha/year) and Total Eligible 
Emission per year (Mg CO2/year).  

25. In addition, it is possible to examine the effect of a cost threshold, which can represent 
a carbon price, to identify which emission abatement options have a lower opportunity 
cost. The threshold can be changed by altering the value in the box or dragging the 
corresponding line in the graph. The analysis also generates a summary measure of Net 
Emission by Threshold, which is the cumulative level of abatements and sequestrations that 
have opportunity costs less than the cost thresholds. By clicking the Detail, the associated 
NPV and Emission for each of the contributing land use change options are displayed. 
(represented by the vertical axis labeled: Changes in NPV/C-stock ($/Mg CO2)).  Bars to the 
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left and below the dotted lines have opportunity costs of emissions abatement that are 
lower than the stated threshold.  

26. The Chart tab in the Output Summary screen displays an opportunity cost curve. All 
the land uses changes in each of the sub-national zones are represented. The different 
colors of the bars identify the zones, while the specific land use changes can be highlighted 
with the cursor. Three different charts can be generated: Emission, Sequestration, Mixed 
[Both]. For any of the charts, labels that correspond to each bar can be temporarily 
highlighted by moving the cursor over the bar, or be added to the chart by right clicking on 
the desired bar and clicking Add Label in the dialogue box.  

27. In Figure 11.11, a cost threshold value of $5 corresponds to an emission level of 47.59 
Mg CO2e/ha/year. Most of the land use changes have opportunity costs lower than the 
threshold level. For example, the land use change of Undisturbed mangrove to Log over 
mangrove has an opportunity cost of -$0.9 and contributes approximately 11 Mg CO2e/ha 
to the (total) emission level. (Note: some of the land use options may not be readily 
apparent in the graph. This could be a result from either: 

a) the opportunity cost is close to or equal to zero. In such a case, the height of 
the bar is the same as the horizontal axis. 

b) the amount of emission reduction is relatively small. Therefore, the width of 
the bar is very narrow with only the gray color of the borders showing. 
 

Enlarging the graph can help reveal the less visible land use change emissions. 
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Figure 11.11. Output Summary and associated Chart from REDD Abacus example 
 
 

) 







www.worldbank.org/wbi

For more information, please contact
Pablo Benitez — pbenitez@worldbank.org
Gerald Kapp — geraldkapp@worldbank.org 

For specific information on the training manual and workshops, 
please contact fcpfsecretariat@worldbank.org.
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