

UN-REDD PROGRAMME

Relationship & synergies between monitoring systems for carbon stock change and ecosystem co-benefits

Maurizio Teobaldelli, Nathalie Doswald & Barney Dickson

June 2010

REDD+, carbon & ecosystem co-benefits

- Implementing REDD+ will require a system to establish the success of the mitigation actions
 - Monitoring & reporting carbon emissions, removals, carbon stock and forest area changes
- REDD+ can generate co-benefits but to understand what these are and how they change - monitor co-benefits

P R O G R A M M E

REDD+, carbon & ecosystem co-benefits

- •Which co-benefits? How to monitor them? How to reduce cost burden?
- •Are there any relationship between monitoring systems for carbon stock change and ecosystem cobenefits?
- •Are there synergies between monitoring carbon stock change & co-benefits?
- •Should be the two monitoring systems distinct or combined into a single monitoring system?
- •Should the monitoring system for ecosystem cobenefits be mandatory or voluntary?

GRAMME

Ecosystem co-benefits

Ecosystem services (MEA)

Ecosystem

Monitoring System

The <u>collection and analysis of repeated</u> <u>observations or measurements</u> to evaluate changes in condition and progress toward meeting a management objective (Elzinga et al. 2001)

As resources for monitoring are often limited:

- It should be part of an adaptive cycle
- It should be driven by objectives
- It is justified only if opportunities for alternative management exist otherwise is useless

Some networks and/or monitoring systems related to ecosystem services

	 GEO-BON (Global Earth Observation - Biodiversity Observation Network)
	& GEO-FCT (Forest Carbon Tracking);
	- GFW, WRI (Global Forest Watch; World Resources Institute);
	GOFC-GOLD (Global Observation of Forest and Land Cover Dynamics):
International	• FRA, FAO (Global Forest Resources Assessments of the Food and Agricultural
	Organization of United Nations);
Initiatives	ILTER (International Long Term Ecological Research Network)
	TEMS, GTOS (DBs of Terrestrial Ecosystem Monitoring Sites by the Global
	Terrestrial Observing System)
	 IABIN (Inter-American Biodiversity Information Network);
	GBIF(Global Biodiversity Information facility);
	NATIONAL FOREST INVENTORIES
	OTHER MONITORING SYSTEMS
National	 Satellite Land Monitoring System;
Mational	 National Environmental Agencies;
Initiativoo	 Water Resources Agencies
Initiatives	 Independent Monitoring Systems
	LTER (Long Term Ecological Research Network)
	LOCAL COMMUNITY MONITORING

Monitoring carbon stock changes for REDD+

Monitoring carbon stock change requires assessing:

- (1) <u>Location</u>: i.e. land unit (ha); land use categories; carbon pools
- (2) <u>Quantification</u>: carbon density (carbon ha⁻¹) and carbon stock (stratified by eco-regions, forest type, C pools)
- (3) <u>Changes</u>: quantitatively variation of carbon stock over time

Monitoring carbon stock changes for REDD+

- different REDD+ activities and LULUCF
- -different carbon pools & tier level
- -different parameters/indicators all related to carbon
- IPCC guidance
- Remote sensing & ground-based inventories with different resolution, intensity & time frame (e.g. NFIs repeated every 5 yrs)

Relationships

Monitoring ecosystem co-benefits change in REDD+

Monitoring ecosystem co-benefits requires assessing:

- (1) <u>Location</u> : land unit (ha); eco-region; ecosystem; forest type; niche
- (2) Quantification: quantity/quality of ecosystem co-benefits (info could be also stratified)

(3) <u>Changes</u>: quantitatively or qualitatively variation of co-benefits

Monitoring ecosystem co-benefits change in REDD+

- different natural & human-induced activities (including also REDD+ activities) & LULUCF
 Different parameters/indicators related to different ecosystem services (timber; NTFPs, soil, water, etc.)
 - No agreed standards
- Remote sensing & ground-based
 - measurements with different resolution, intensity & time frame

		Carbon stock	Ecosystem co-benefits	
REMOTE SENSING	Coarse to medium resolution	e.g. land use categories, forest cover, deforestation, etc.	e.g. topography, forest cover and location and boundaries of different ecosystem and resources, etc.	
	High resolution	e.g. Forest degradation; conservation and enhancement of forest carbon stock, etc.	e.g. Forest fragmentation; continuity of streams, etc.	
	Multispectral Imagery	e.g. Forest type or species differentiation, Indicator of growth rate, vegetation cover and density, NDVI, soil types, etc.	e.g. composition and thermal properties of ground, turbidity, temperature or pollution of lake and/or river, etc.	
	RADAR/ LIDAR	biomass; tree height	Degree of vulnerability of land to floods, landslide, erosion or subsidence, etc.	
GROUND-BASED MEASUREMENTS		Calibration of RS; additional information (DBH, carbon pools; allometric equations; BECF), etc.	timber; NTFPs; biodiversity; soil, water and air quality, etc.	
	UND-BASED	Calibration of RS; additional information (DBH, carbon pools; allometric equations; BECF),	Degree of vulnerability of land to floods, landslide, erosion or subsidence, etc. timber; NTFPs; biodiversity; soil, water and air quality,	

Synergies

Distinct

Distinct or combined monitoring?

Clarity:

 objectives of external monitoring system of ecosystem co-benefits are not necessarily directed toward meeting REDD+ objectives;

Promotion and supporting Reducing emissions, increasing removals and Objectives stabilizing forest carbon stock of co-benefits LULUCF activities Shared info e.g. REDD+IA) Management orest Land remaining **Non Forest Land** Forest Land International or National Monitoring **REDD+** National data Systems for Forest Measuring (M) ecosystem services Monitoring **IPCC** guidance System Verification (V) **Quality Control** Quality Assurance Reporting (R) National REDD+ communication under REDD-

Effectiveness :

- External monitoring systems of ecosystem services do not benefit of resources (e.g. RS and NFIs) utilised within the monitoring system for carbon stock change but these initiatives could provide information useful to support and promote safeguards;

REDD+IA: REDD+ Impact Assessment **NFI**: National forest inventory; **AD**: Activity Data;; **EF**: Emission Factor; **E.E**: Emission Estimate

Distinct or combined monitoring?

Clarity:

-objectives of a combined monitoring system for carbon stock and ecosystem co-benefits are directed toward meeting REDD+ objectives

Combined

Effectiveness:

- Resources are used effectively in the combined system;
- External monitoring
 systems for ecosystem
 services could inform the
 monitoring system in
 REDD+ but they can also
 benefit of shared and
 harmonized information
 coming from the combined
 monitoring system;
- **NFI**: National forest inventory; **AD**: Activity Data; **EF**: Emission Factor; **EE**: Emission Estimate

Difficulties in monitoring ecosystem co-benefits in REDD+

Monitoring ecosystem co-benefits requires assessing different parameters & indicators

- Not all co-benefits are measurable or have enough data
- difficulties to identify driver of changes linked with REDD+
- Resolution (implementation phases)
- No agreed standards
- Resources limited and in REDD+ for carbon assessment
- Current initiatives information may not match up

Conclusions

Conclusions

- There are clear relationships between monitoring systems for carbon stock change and ecosystem co-benefits;
- Carbon stock change assessment uses agreed standards (IPCC) and it refers to land use and some forest and soil characteristics which may be also used for assessing changes of ecosystem cobenefits
- Ecosystem co-benefits are **multidimensional concepts** and monitoring is challenging (timber; NFTPs, soil; water; air; etc.); methodologies are various and generally they belong to the field of interest
- However RS and ground-based measurements are used to detect and quantify variables in both monitoring systems.

Conclusions

- A mandatory monitoring system for ecosystem co-benefits may requires agreed standards (methods)
- Nevertheless there are <u>numerous ongoing initiatives</u> related to ecosystem services at international, national or local level which may benefit REDD+
- Although external monitoring system for ecosystem services may inform REDD+ synergies may be less effective if objectives of monitoring are different and resources are not shared in an integrated and effective way
- In REDD+ a combined monitoring system for ecosystem co-benefits may be costly although it may be more effective to achieve REDD+ objectives and to promote other international agreements and conventions

Summary

Relationship between Carbon stock change monitoring and ecosystem co-benefit monitoring

Synergies depends on implementation of monitoring system whether combined or distinct

Ecosystem co-benefit monitoring still challenging as other indicators and standards need to be established

PROGRAMME

For more information...

Visit <u>www.un-redd.org</u> Email <u>un-redd@un-redd.org</u>

Thank you for listening!

