

National Forest Monitoring System México

"Reinforcing REDD+ Readiness in Mexico and enabling South-South cooperation" CONAFOR-PNUD-FAO

MRV is central element in the REDD+ following the UNFCCC and the IPCC guidelines.

Cooperation between Norway and Mexico governments to the project "Reinforcing REDD+ Readiness in Mexico and enabling South-South Cooperation"

y las naciones

Project Results

enabling South-South

Cooperation"

Outcome 1: MRV System desing and implemented

- Measure and moritoning
- Report and verification

Outcome 2: South-South cooperation and capacity building

- Strenght national capacities for MRV
- South-South strategy
- Virtual Excelence Center for Forest monitoring

Outcome 3:Linkage and Synergies for Public Policies Follow-Up

Tool to generate information to quantify **GHG** emissions and absorptions from deforestation and forest degradation at national scale.

- 1. Monitor REDD+ implementation.
- 2. Assess performance of mitigation actions in forest sector.
- 3. Provide relevant information for design, implementation and evaluation of public policies.

COMPONENTS OF NFMS

INTERINSTITUTIONAL ARRANGEMENTS

AD

Land Use Series

.

National Forest Inventory

GHG

GHG Inventory

System Institutionalization

ACTIVITY DATA

CHANGE MATRIX

																		2003															
	Land Use Cha	nge Matrix				PRIN	IARY FO	REST LAI	ND						SE	CONDA	RY FORES	ST LAND					GRASS	SLAND			WETL	AND		CROPLAND) Si	ETTLEMENTS OF	THER LANDS
	SII - S	SIII	ВС	BCO/P	BE/P	BM/P	EOTL/P	MXL/P	SC/P	SP/P	SSC/P	VHL/P	BCO/S	BE/S	BM/S	EOTL/S	MXL/S	SC/S	SP/S	SSC/S	VHL/S	EOTnL/P	MXnL/P	MXnL/S	Р	VHnL/P	VHnL/S	Acuícola I	HUM	AGR-AN AG	R-PER	AH	OT
-		BC	8,90																						697					1055			
	۵	BCO/P	75	12,560,938	90,437	65,257	205	389	11,420	5,261	6,425	43	912,414	28,906	4,113		124	11,912	273	1,671			67		144664					216322	11621	906	41
	ΣZ	BE/P	7(170,880	10,280,128	15,020	92	1,173	49,833	14,473	38,044	280	59,611	785,350	1,544	6,726	1,128	44,875	1,983	11,635			471		144288	90				108925	1153	607	466
-	PRIMARY OREST LAN	BM/P		19,385	3,014	1,100,682				34,639	138		4,294	2,048	114,074				3,484	169					12794					22115	3978	58	
	₹ -	EOTL/P		207	DRI	MΛR	V 19 19 E	RMA	NEN	CV	1,021		283	12		T1,10	ECD/	۸٦%٦	LIUNI	3,204			5931		49217	1074				14938	323		396
	ES	MXL/P		415	F 1,318		30,150	18,331,685	1 1 12 1 ,4 94, 1	CI		8,332	5,491	11,54	UNE) 1,4 W	EM#	AUA	IIUII			153	62215		265577	1		2028		174761	3044	5495	1817
	F 5	SC/P	115		152,492	568	14,204	5,721	9,798,990	2,594	53,600	2,322	4,930	23,011	10	1,202	972	707,275	12,487	9,506	59	165	228	1	197203	1853		390		275916	17809	5799	1613 577
	_ 6	SP/P	1,293		1,112	17,991			3,797	7,148,738	3,515	1,099	97	933	589	14		1,099	746,762	693	76	10			405662	9223				68069	6296	7139	577
	_	SSC/P	139	5,775	19,583	1,364	342		12,570	74,184	1,841,918	408	878	6,747	198	3		13,608	7,098	456,160		72			73449	_ D 1	:FORE	ESTATIO	ON	42435	4343	216	19
		VHL/P		34	499		26	9,019	1,937	797	532	981,533		24	326	146	1,785	3,825	680	838	29,089	1761	8018	132	21120	29786		2521		42782	1742	1365	10829
		BCO/S		224,619	18,758	8,380		738	2,400	362	1,299	160	2,532,269	13,903	9,859		50	11,322	117	1,972			6		96910					82298	1688	205	550 1482
	۵ ح	BE/S	368		121,546	1,388	8	698	19,629	1,037	6,299	115	25,277	3,508,386	234	787	45	38,669	437	6,124			209		205948					78139	902	231	1482
	ARY	BM/S		1,217	105	24,921				910	19		1,340	111	410,433				66	613					24775					27398	1250	34	
•	2 5	EOTL/S		237	1,807	ODE	4,948		/FDV	406	1,256	55		CFC	ONIC	133,657	DED	666 A A A I	131	721			254		7498					9226	45	25	10
(1)	STS	MXL/S		8	1,26	UKE) LIK	E UW				182	1	_5Ľ	UNL	JARY	2, 34 2, 18 4	KIVIAI	NFINC	γ			606		60741	74		478		65564	794	6618	74
1993	SECOND/ FOREST L	SC/S		16,132	28,164	63	220	384	701,735	9,796	112,408	3,020	20,493	72,101		4,202	745	5,616,416	599	73,346	83	549	341		443443	804		309		354855	26795	8701	1618
Н	S G	SP/S SSC/S	1,265		950	3,862			40	410,899	20,196	173	507	1,357	2,761	305			1,614,894	265		11			378332	2927				94866	11148	2654	452
	_		454	3,672	8,254	1,108	747		4,486	19,465	704,993	11	2,127	4,984	210			8,016	3,774	1,169,308	6.070		17		153737	247				63938	1190	423	1618 452 106 713
		VHL/S						24	40			335						246		25	6,8/0	444546	19		616	125		4056		000	507	2240	
		EOTnL/P		444	c		2.480	73,277	18	1	67	3,207 20.737	69	CAE		48	1,225	246		35	4.050	144546	RASS	LAND	10785	1371 5277		1056		999	597	2348	1790
0	RASSLAND	MXnL/P		114	b		2,480	73,277	3,712		6/	20,737	69	615		48	262	2,151		1	1,859	000	344/4113	133333	166898	52//		33503 152		229015 53007	2736	10373 1578	16081 410
		MXnL/S P	4.01	59,736	136.693	7.000	1,483	4C 220	107.700	110 201	73,596	10.702	65.638	179.386	5.836	2,157	25,602	164.106	140 200	84.401	2 700	,,PE	:RMA	NENCY	47756	35153		417		1268473	73320	22718	
		VHnL/P	4,91	39,730	130,093	7,909	1,483	40,239	107,780	7.111	73,390	18.099	00,038	1/9,380	3,830	2,157	25,002	873	149,299 2.727	123	2,790	2310	48608	10773	37468					14362	/3320	318	5805 2314
		VHIL/P VHIL/S			110	09	/	2	381		1	-,					24	8/3	2,121	123	2,128	862	48008	030	3/408	1359024	WETL	AND [®]			1 I CE	CHANG	Z314 C
	WETLAND	Acuícola								Al	FOR	FST	ATIOI	V								LAN	ח ווכ	E CHAN	ICE					LAND	UJĘ	CHAING	113
		HUM								, ,,			****	•								LAN	ט עו	E CHAN	NOE	P	ERMA	NENCY ₁₀	09011006				113
		AGR-AN	14.23	74,916	43.716	6.910	6.689	35,977	72.551	72,553	38.348	8.316	46.683	56.775	8.640	1,628	19.066	145.487	27.017	35,673	1,171	791	61641	13401	673425	6230	_	1829	1,15,000,01	25SIN CAMBI	113120	65119	3008
	CROPLAND	AGR-PER	18/	1	540	8.019	1	2,286	55,513	12,545	3,108	2,547	1,482	482	1,398	289	121	36,600	4,770	3,377	320	1214	537		55260	728		1025		1616(R) COLA		2807	1306
	SETTLEMENT	AH	101	14	540	0,013	1	306	422	56	7	37	1,702	39	1,550	200	865	28	30	1	33	1627	11		834	92				3287	2002210	SIN CAMBIO:	1300
	OTHER LANDS	OT		120				748	354	107	1	11 281	1	144			21	276	89	2	178	1655	8634		2443	1188		10539		3843	15	8578	SIN CAMBIO
		71		120				740	3,74	107		11,201		244			21	210	0.7		1/0	1033	0007	JIT	2444	- 1100					100	-0.5/1	050000

Land Cover 1:100,000 y1:20,000

- Landsat 12-20-32 clases,1993,1995,2000,2005 y 2010
- RapidEye -12-20-35 clases,
 años 2011,2012 y 2013

Cover Change

- Landsat 1995-2000, 2000-2005 y 2005-2010,
- Cambios RapidEye 2011-2012, 2012-2013.

NATIONAL FOREST AND SOIL INVENTORY

PSU = 26, 220 Sites = 81, 665

- Spatial
- Systematic
- Temporal

Sampling: 2004-2007 Grid of km | 5x5 | 10x10 | Re sampling: 2009 -2014 20x20 |

2' 365, 644 trees >7.5 cm (2004-2012)

Additional data bases http://www.mrv.mx/modelosalometricos

DATABASE ANALYSIS- Quality Control

Forest Inventory (INFyS)

QA

- Dbh and height wrong data
- Used a unique id for species

QC

• Normalization $Z = \frac{(x - X_{sp})}{\sqrt{\sigma^2}}$ species.

Where |Z| >= 4.5 sigma

From 2'899,270 individuals (2004-2013)

41,324 < 1.4% with error

Allometric Models

QA

Errors ~30%:

- Typo errors
- Wrong unities
- Environmental condition
- Sampling information $(n,r^2,d.min-max,etc.)$

QC

- Negative estimates
- Decreasing estimates
- Degrees of divergence compared to other equations
- Homogenized species

Allometric Models database-Decision tree algorithm

INEGI. type of vegetation AND Ecoregions

Pinus pseudostrobus

Decision tree version 20 at Observation Level

Emission Factors

Methods

Pool of Carbon	Components
Above ground biomass	Live tree
Underground biomass	Roots
	Dead trees
Dead wood	Stumps
	Coarse Woody Debris
Forest little	Forest litter and Humus
Soils	Soil profile

Emissions and absorptions in the

Método forest sector

- Ete-ted = EFte-ted x ADte-ted
- Eted-te = EFted-te x ADted-te
- Eou-tf = EFou-tf x ADou-tf

$$U_{total} = \sqrt{U_1^2 + U_2^2 + ... + U_n^2}$$

TF-TFd

$$U_{total} = \frac{\sqrt{(U_1 \cdot x_1)^2 + (U_2 \cdot x_2)^2 + \dots + (U_n \cdot x_n)^2}}{|x_1 + x_2 + \dots + x_n|}$$

OU-TF

Etot = Etf-tf + Etf-tfd + Etfd-tf +EFou-tf

Issue:

To assign EF according to Transition, Class and pool

EMISSION FACTOR DATA BASE

				1		
Fores	st Lanc	l – Other	Land	Forest	t Land Rema	aining
Strata	n	(ton C/ha)	U (%)	n	(ton C/ha/year)	U (%)
BCO/P	4404	33.6	2.1	3190	0.43	25
BCO/S	1137	22.1	4.8	780	0.30	57
BE/P	3365	20.7	2.7	2330	0.46	19
BE/S	1466	14.7	4.9	1037	0.48	24
BM/P	357	37.7	9.9	245	1.46	52
BM/S	160	18.1	19.0	102	0.30	228
EOTL/P	32	3.5	95.1	22	-0.41	-311
EOTL/S	31	4.6	55.8	28	0.09	193
MXL/S	198	3.2	28.8	129	0.04	324
SC/P	939	17.4	5.3	660	0.41	48
SC/S	613	12.6	7.6	413	0.66	35
SP/P	2375	40.4	2.9	1436	0.48	51
SP/S	585	19.7	9.1	280	0.63	63
SSC/P	993	30.2	4.8	680	1.36	18
SSC/S	491	16.1	8.9	187	0.63	63
VHL/P	246	13.3	22.4	142	1.03	56

Deforestación = pérdida neta de cobertura forestal

Transition Pool		FL-FLd (Degradation)	FLd - FL (Recuperation)	FL-OL (Deforestation)	OL-FL (Reforestation)
Above ground biomass	Yes	Yes	Yes	Yes	Yes
Under ground biomass	Yes	Yes	Yes	Yes	Yes
Dead trees	Yes			Yes	
Stumps				Yes	
CWD	Yes			Yes	
DOM (litter and duff)				Yes	
Soils				Yes	

- 1. The number of EF depends on the classification system
- 2. 374 total EF for 5 pools and 5 transitions
- 3. 17 algorithms for EF estimation programed in R

NFMS Implementation

Results

FOREST SECTOR (USCUSS)

- Net Sink CO_{2eq}
- Sixth Emitter CO_{2eq}
- > 27% of the CO_{2eq}total balance

Database Management (Quality - Systematization)

Protocols

Uncertainty estimations (Transparency)

					•	Estrato	Número de UMS	Número de UMP	Área (Has)	Densidad de Carbono (tonC/ha)	Incertidumbre (%)
						RC .	24	. 9	37,350.7	50.3	38
					non 1900/EL)			4,539	12,916,771.5	32.6	2
Contr. Class	Territor.	SP(SR)	-60	Secondary of 42-5540	Denner Property Pr	Steman	HEOD.	1,189	3,920,676.8	21.6	5
A	291a	Yhri a	allus	Cama	Suddivision.	-	2017	3,478	10,708,651.8	20.0	3
8	7.00		122.0	2000	200 (20) (40)	Proc + y Proc	+4,00	1,522	4,920,073.4	14.4	5
1	FFin	Diria.	AD=	Days	E-e-FritAD+	- Contract	and the same of	367	1,300,704	38.0	10
	100	10000	22			$\mathcal{V}_{DS} = q \mathcal{V}_{TO}$	* + Marur	160	541,573.1	18.1	21
C	TEX	Thirtie :	AD=	Uapric	E-SFU*AD:	$v_{ext} = \sqrt{v_{ext}}$	Date: 10	28	270,230.5	8.3	70
				**********		500 5 4 5 00	1.74	31	157,748.2	5.7	43
long s	Examp.	frequent in	Married A	Transfer 1	E-fartiefs	$U_{\rm Pl} = 1000000000000000000000000000000000000$	SALT BUTTER	4	154,700	2.9	219
						164	graph .	1,497	18,501,770.3	1.7	11
1				10.00	1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		184	2,437,423.9	1.4	30
				Time	om 7 (F1-F1.)			889	34,105,690.3	0.2	22
Gleat Code	Factor	Distance of	- 20	All district	Same.	Summer	100,000	89	2,660,600.2	0.5	85
Among).	15.77		550.07	1 1000 2000	or company leads		01100	2,067	31,116,487	4.7	10
A.	EF16	Urts.	ADM	West-	Startifica Albon	$V_{\rm min} = \sqrt{V_0}$	7.0.7	984	10,896,213.7	12.1	6
						Page 2 4/4	mi + Funi	629	6,799,071.2	8.3	8
	EFin	3000	AD=	Dates	Ea-EFo ² ADa	CHO Service	cal 9 Vaint	2,512	8,162,564.8	34.4	3
_	IFE	There	AD=	Tiacco	Estate ADV	7.768 - 4.76	ear of Fairty	482	2,122,608.4	14.1	11
	ms.	Lavo	WINE.	Date	market to state	$n_{\rm min} = \sqrt{V_{\rm m}}$	t Van	1,175	2,990,571.9	21.8	5
Tired a	-	Propagamit au	males a	Troposter 2	E-Earthrite			305	1,451,458.9	15.2	11
7			100		5,000000	e durantes	One Shelled	263	1,097,953.5	10.2	22
					11.5.1.11.11		8747	18	78,105.8	6.1	68
Total o		Propagated sp.	etalony e	whole	5454E	Agra (Arts)	713119.7	171	1,428,189.4	1.6	50

Enhancements INFyS field (variables)

Sitio 3

Capacity Building

Comunication

Emission Estimation Plataform

Cambio de Uso de Suelo	_ Superficie (ha)	Emisiones de C (tonC)	Incertidumbre (%)
OU-PRAD	556652	-118636.85	0
OU-TF	678780	-627275.09	0
PRAD-OU	225469.25	796472.785	5.445
PRAD-PRAD	67826854	0	
TF-OU	155562.25	1938158.571	1.128
TF-PRA	192668	2805288.599	1.073
TF-TF	86073201	0	
TF-TFd	238116	401245.16	0
TFd-TF	1147570	-1246859.36	0

Showing 1 to 9 of 9 entries

& Exportar como Excel archivo

http://pref.cnf.gob.mx/pref/

IMPACT

Carbon and Biomass

United Nations

Framework Convention on Climate Change

Biannual Update Report (BUR) NGHGI - LULUCF

NFMS Useful for:

INDC

REDD+ report

Conversion of natural forest, reversals, displacement

6ª NATCOM

Characteristics and requirements or a National Forest Monitoring System

Technical Advisory Committee

Institutional. operational

legislative and **Analysis**

Institucional Structure

Proposal

Technic Unit (FAO)

CICC GT-REDD+

Planation and information Coordination

National Forest Monitoring System Direction

INECC

CONABIO

IMPACT

- Advance in REDD+ readiness
- Accomplishment of international commitments
- Improvement of monitoring of mitigation national targets
- Mexico is now a referent in Forest Monitoring in Latin
 America
- South South cooperation opportunities

CHALLENGES... SOME IMPROVEMENTS

- 1. Land Cover (32 classes)
- 2. Change in land cover (deforestation / reforestation) (IMAD-Maf)
- 3. Canopy cover as a proxy for degradation / recovery (Matt Hansen)

Land Cover Maps

preliminar 35/16 clases

2-4 clases de

cambio

CONABIO

COMIDIÓN NACIONAL PARA EL.
CONOCIMIENTO Y USO DE LA BIODIVERSIDAD.

Land Cover Change Maps

1:20,000 & 1:100,000 16/35 clases, revisado, control de calidad, dirección y tipo de cambio, incertitumbr e preliminar calculada

revisión por expertos externos (academ ia, etc.), comenta rios

edición final, publicación

interpretes expertos

red de expertos externos, UNAM, UAM, etc.

CONAFOR, INEGI, CONABIO INECC, CONANP

CHALLENGES

- Long Term Interinstitutional Coordination
- High level capacities
- Generate and transfer of "new" knowledge
- Field campaign for all pools and changes
- Tools to share results
- Long term sustainability (institutionalization of the NFMS)
- Used for other purposes

South-South Cooperation Strategy

Reinforcing REDD+ and South-South Cooperation Project

Mesoamerican Strategy for Environmental Sustainability

- Cooperation instrument: structured flexible and participatroy to strenghten capacities in the region
- Promote sustainable development, identifying priorities in the region and including actions that were established in agreement with the countries.
- Climate change is one of the three strategic areas

May 2013 Second meeting of the Ministers Council of EMSA (may 2013), cooperation activities y monitoring systems and climate change analysis

July 2013

- Workshop "International cooperation opportunities to strengthen monitoring systems in Mesoamerica and REDD+ Readiness"
- Identify needs and priorities on forest monitoring in order to identify collaboration priorities in the Mesoamerican Region.

Nov 2013

- Draft "State of implementation of National Monitoring Systems in Mesoamerica"
- Warsaw meeting: Agreement to work in a Work Plan proposal to strengthen national forest monitoring systems.

Féb 2014 • Draft for final feedback from countries. Proposal for three main activities: i) southsouth cooperation early actions; ii) sources of finance for the activities, iii) Master plan for building capacities and institutionalizing monitoring systems.

Feb – Nov 2014 Early cooperation actions: Strengthening of technical capacities through six workshops (2014), with technical and financial support of the main initiatives working on monitoring systems for REDD+ in the region.

Oct 2014 Approval of regional needs assessment: financial and technical support by the UN-REDD programme to consolidate the Detailed Plan for Forest Monitoring within the EMSA

GUIDING PRINCIPLES

- 1. Compatibility
- 2. Quality and neutrality
- 3. Sinergy promotion approach
- 4. Economies of scale
- 5. Network-based
- 6. Sustainability

Coordination and execution of activities with initiatives operating in the region

LINES OF ACTION

Diagnosis of technical capacities & the status of implementation of NFMS in the region

- Common framework of analysis: regional needs
- International Cooperation Opportunities Workshops

Technical and financial support for the executio of early actions of south-south cooperation

 Forest Monitoring Capacity Strengthening Package Elaboration of a Long Term EMS/ Work Plan on Forest Monitoring

- Workshop: Update of regional needs (march 2015)
- Country Needs
 Assessments
- Workshop: Elaboration of the Proposal for the EMSA Work Plan

Documentation of Mexico's lessons learned and publication of technical materials Construction of a regional network of professionals in forest monitoring Design and installment of a Virtual Center of Excellence in Forest Monitoring

Strategic Workshop for the Strengthening of the Virtual Center of Excellence in Forests Monitoring

The Virtual Center of Excellence in Forest Monitoring (CEVMF, in Spanish) is an online **collaborative platform** that offers solutions of **knowledge management** to strengthen the sustainable management of forests, through robust and transparent **forest monitoring systems**.

CENTRO de EXCELENCIA VIRTUAL en

- People who depend on forest resources for their livelihood
- Owners and possessors of forests
- Decision makers at local, subnational, national and regional
- Specialized public and private initiatives
- Academic institutions and civil society
- Technical and professional forest monitoring

Addressing Mesoameric an priorities

Methodology: In various sessions in which representatives of the EMSA actively participated, strategic lines of action were determined within the areas of collaboration of the CEVMF. These lines of action were prioritized as follows:

CENTRO de EXCELENCIA VIRTUAL en MONITOREO FORESTAL

Addressing Mesoamerican priorities

- Creation of an online database of permanent plots.
- Publishing

 links to
 official
 information
 of the
 countries of

 the region.
- Sharing of documents sorted into specialized information.

Information

- Making available
 expert
 technicians for
 specialized
 technical
 assistance in
 forest inventory
 methodologies
- Establishing a
 forum on
 methodologies
 for the calculation
 of forest growth
 rates, that links
 research centers
 and universities
- Establishing
 thematic
 forums according
 Networking

- Sharing
 experiences of
 geographic
 information
 processing
- Systematizing and sharing experiences and lessons learned in the creation of protocols methodologies and detect forest to degradation through remote sensing
- Training on methodologies of estimation of emissions factors through forest

addition to these activities, the CFVMF committed to developing hosting and activities comprised within the Long **EMSA** Term Workplan on Forest Monitoring.

CENTRO de EXCELENCIA VIRTUAL en MONITOREO FORESTAL

PHASES OF CEVMF

SEMARNAT

SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

