Measurements on the ground are the key! Remote sensing alone - will not do it!

> Ronald E. McRoberts Northern Research Station U.S. Forest Service Saint Paul, Minnesota USA

Outline

• Background

• Ground inventories

- sampling for change in tropical forests
- advantages/disadvantages of ground inventories
- Remote sensing-based inventories
 - GOFC-GOLD/IPCC GPG recommendations
 - sensor considerations
 - ground data considerations
 - bias and precision
 - advantages/disadvantages
- Summary and Conclusions

Background

- Definitions (GOFC-GOLD Sourcebook)
 - Deforestation:
 - permanent conversion of land from forest to non-forest use
 - depends on definition of forest (area)
 - Degradation:
 - anthropogenic net emissions caused by a decrease in crown canopy cover/biomass
 - how much of a decrease?

• Ground sampling

- focus on:
 - tropical forests
 - change estimation (deforestation, degradation)
- advantages/disadvantages

• Sampling designs

- Spatial balance
 - grid-based or polygon-based

• Sampling designs

- Spatial balance
 - grid-based or polygon-based
 - spatially aligned or unaligned

Spatially aligned

Spatially unaligned

• Sampling designs

- Spatial balance
 - grid-based or polygon-based
 - spatially aligned or unaligned
- Stratification
 - vary sampling intensities

Agriculture

• Plot configurations

- Clustering
 - greatest cost of measuring a plot is travel

American subplots

Finnish plot cluster

• Plot configurations

- Clustering
 - greatest cost of measuring a plot is travel
- Size
 - topography \rightarrow smaller

• Plot characteristics

- Clustering
 - greatest cost of measuring a plot is travel
- Size
 - topography \rightarrow smaller
 - tree density \rightarrow smaller
 - diversity \rightarrow larger cluster area
 - smaller plots & more plots per cluster?

American subplots

Finnish plot cluster

• Plot characteristics

- Clustering
 - greatest cost of measuring a plot is travel
- Size
 - topography \rightarrow smaller
 - tree density \rightarrow smaller
 - diversity \rightarrow larger
- Change
 - large proportion of permanent plots

Ground sampling design and plot configuration recommendations

• Spatial balance \rightarrow systematic component

• Stratification

• allocation to vary sampling intensities

• Plot configuration

- cluster sampling
- relatively small, nested plots
- large proportion of permanent plots

Ground inventories

- Advantages
 - We know how to do it !!!
- Disadvantages
 - Small sample sizes for remote, inaccessible regions
 - No maps

• Remote sensing-based inventories

- GOFC-GOLD/IPCC GPG recommendations
- sensor considerations
- bias and precision
- advantages/disadvantages

GOFC/GOLD & IPCC GPG recommendations

- Use Landsat
 - cloud cover ???
- Supervised classification
 - requires reference data !!!
- Automated classification
 - promotes consistency
- Supported by ground observations
 - suggests integrated approach

Integrating ground and remote sensing inventories

Landsat TM pixels and American inventory plot configuration

Integrating ground and remote sensing inventories

Spatially aligned

Spatially unaligned

Which alignment facilitates acquisition of lidar data from an airborne platform?

GOFC/GOLD & IPCC GPG recommendations

- Use Landsat
 - cloud cover ???
- Supervised classification
 - requires reference data !!!
- Automated classification
 - promotes consistency
- Supported by ground observations
 - suggests integrated approach

• Remote sensing

- GOFC-GOLD/IPCC GPG recommendations
- sensor considerations

• Sensor considerations

- cloud cover
 - short repeat cycle length
 - cloud penetration
- change estimation
 - resolution comparable to deforestation size
 - canopy penetration for degradation
- inexpensive

Sensor considerations

Optical (passive) sensors

Sensor	Resolution	Repeat cycle	Cost
SPOT	8-m x 8-m	2-3 days	High
Landsat	30-m x 30-m	16 days	Free
MODIS	250-m x 250-m	1-2 days	Free

Active sensors

Scanning lidar:

active component: laser (light)
airborne platforms
minimal cloud penetration
penetrates forest canopy
costly

Synthetic aperture radar:

active component: microwave airborne platforms all weather, all day/night penetrates forest canopy costly

• Sensor considerations

- cloud cover
 - short repeat cycle length
 - cloud penetration
- change estimation
 - resolution comparable to deforestation size
 - canopy penetration for degradation
- inexpensive
- saturation

Saturation:

To some degree, all remote sensors experience biomass saturation, i.e., biomass levels greater than some limit cannot be distinguished .

Englhart et al. 2011. Rem. Sens. Env.

• Sensor considerations

- cloud cover
 - short repeat cycle length
 - cloud penetration
- change estimation
 - resolution comparable to deforestation size
 - canopy penetration for degradation
- inexpensive
- saturation
- combining plot and remotely sensed data

Co-registration:

When combining data from multiple sources such as ground plots and remote sensor, correct registration of the multiple coordinates systems to each other is crucial.

Requires high quality GPS receivers

• Remote sensing

- GOFC-GOLD/IPCC GPG recommendations
- sensor considerations
- accuracy assessment: bias and precision

Error/Confusion Matrix

		Predicted class		Total	Producer's	
		No chg	F→NF	NF→F		accuracy
Observed class	No chg	75	1	8	84	0.90
	$F \rightarrow N F$	2	5	1	8	0.63
	NF→F	1	1	6	8	0.75
Tota	1	78	7	15	100	
User's accuracy		0.96	0.71	0.40	(DA=0.86

Should the donor pay?

- Suppose:
 - Agreed limit is 5% deforestation
 - From classification, $\hat{p}_{F \rightarrow NF} = 0.045$
- However, from error matrix:
 - 7/100 predicted to be F \rightarrow NF
 - 8/100 observed to be F \rightarrow NF
 - bias estimate is $-0.01 \Rightarrow \hat{p}_{F \rightarrow NF}^{adj} = 0.045 + 0.01 = 0.055$
 - Is 0.055 statistically significantly greater than 0.05? Need a confidence interval and, in turn, a variance estimate
- Conclusions:
 - An error matrix by itself is not sufficient
 - Need good accuracy assessment data!!

• Remote sensing

- GOFC-GOLD/IPCC GPG recommendations
- sensor considerations
- accuracy assessment: bias and precision
- advantages/disadvantages

Remote sensing-based inventories

- Advantages
 - Spatial coverage
 - Maps
- Disadvantages
 - Data acquisition
 - clouds (Landsat/SPOT)
 - cost (lidar)

Remote sensing-based inventories

• Disadvantages (continued)

We do not have much experience!

- Matching definitions of deforestation and degradation to sensor capabilities
- Integrating ground and remotely sensed data acquisition
 - adequacy (pixel/plot sizes)
 - efficiency (flight lines),
 - training and accuracy assessment data
- Bias and precision estimation

Why ground data are the key

- Selection of deforestation and degradation thresholds require ground data assessments to determine levels that remote sensing can detect
- Supervised classification requires training data
- Bias and precision estimation require accuracy assessment data

Summary/Conclusions

Ground inventories

- Can deal with any threshold for deforestation and degradation
- We have considerable experience
- Sample sizes will be too small for remote and inaccessible regions

Remote sensing

- Complete coverage
- We can do it, but efficiency and precision are unknown
- We have no other choice for remote and inaccessible regions

• Solutions

- Learn fast!
- Exploit what we know and can do well (ground inventories)